Skip to main content
Log in

The Effect of Spin Center Parameters on the Photoactivity of Nanocrystalline Titanium Dioxide in the Visible Spectral Range

  • NANOMATERIALS AND CERAMICS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Nanocrystalline TiO2 samples, obtained by sol–gel and supercritical fluid (SCF) methods, have been studied by optical spectroscopy and electron spin resonance. It is established that the main type of spin centers in SCF samples are Ti3+/oxygen vacancy centers and conduction electrons. Radicals (\({{{\text{N}}}^{ \bullet }}\), \({\text{N}}{\kern 1pt} {\text{O}}{{{\kern 1pt} }^{ \bullet }}\)) and (\({{{\text{C}}}^{ \bullet }}\)) are found in the samples doped with nitrogen and carbon, respectively. The energy levels of defects in the band gap of the structures studied are determined. It is explained why samples with close values of nanocrystal sizes, specific surface area, and defect concentration have a significantly different photocatalytic activity in the visible spectral range. It is found that impurity centers with energy levels near the middle of the semiconductor band gap must be incorporated into TiO2 to obtain samples with the highest photocatalysis rate. New possibilities for developing energy-efficient (without UV irradiation) photocatalysts are discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. D. Liu, W. Zi, S. D. Sajjad, et al., ACS Catal. 5, 2632 (2015).

    Article  Google Scholar 

  2. J. Schneider and M. Matsuoka, Chem. Rev. 114, 9919 (2014).

    Article  Google Scholar 

  3. K. Sasan and F. Zuo, Nanoscale 7, 13369 (2015).

    Article  ADS  Google Scholar 

  4. O. Oluwafunmilola and M. Maroto-Valer, J. Photochem. Photobiol. C 24, 16 (2015).

    Article  Google Scholar 

  5. B. O’Regan and M. Gratzel, Nature 335, 737 (1991).

    Article  ADS  Google Scholar 

  6. A. Mills and S. Hunte, J. Photochem. Photobiol. A 108, 1 (1997).

    Article  Google Scholar 

  7. X. Chen and S. Mao, Chem. Rev. 107, 2891 (2007).

    Article  Google Scholar 

  8. N. Serpone and E. Pelizzetti, Photocatalysis: Fundamentals and Applications (Wiley, New York, 1989).

    Google Scholar 

  9. M. R. Hoffmann, S. T. Martin, W. Choi, et al., Chem. Rev. 95, 69 (1995).

    Article  Google Scholar 

  10. A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photochem. Photobiol. C 1, 1 (2000).

    Article  Google Scholar 

  11. A. V. Rupa, D. Divakar, and T. Sivakumar, Catal. Lett. 132, 259 (2009).

    Article  Google Scholar 

  12. R. Asahi, T. Morikawa, T. Ohwaki, et al., Science 293, 269 (2001).

    Article  Google Scholar 

  13. Z. Barbieriková, E. Pližingrová, M. Motlochová, et al., Appl. Catal. B: Environ. 232, 397 (2018).

    Article  Google Scholar 

  14. A. A. Minnekhanov, N. T. Le, E. A. Konstantinova, et al., Appl. Magn. Reson. 48, 335 (2017).

    Article  Google Scholar 

  15. N. S. Miyamoto, R. Miyamoto, E. Giamello, et al., Res. Chem. Intermed. 44, 4577 (2018).

    Article  Google Scholar 

  16. T. V. Sviridova, L. Yu. Sadovskaya, E. M. Shchukina, et al., J. Photochem. Photobiol. A: Chem. 327, 44 (2016).

    Article  Google Scholar 

  17. T. V. Sviridova, L. Yu. Sadovskaya, E. A. Konstantinova, et al., Catal. Lett. 149, 1147 (2019).

    Article  Google Scholar 

  18. E. A. Konstantinova, A. A. Minnekhanov, A. I. Kokorin, et al., J. Phys. Chem. C 122, 10248 (2018).

    Article  Google Scholar 

  19. K. A. Tatarenko and A. V. Lazarev, Sverkhkrit. Flyuidy: Teor. Prakt. 10 (4), 4 (2015).

    Google Scholar 

  20. C. Aymonier, A. Loppinet-Serani, H. Reveròn, et al., J. Supercrit. Fluids 38, 242 (2006).

    Article  Google Scholar 

  21. R. Camarillo, S. Tostón, F. Martínez, et al., J. Chem. Technol. Biotechnol. 92, 1710 (2017).

    Article  Google Scholar 

  22. R. Camarillo, D. Rizaldos, C. Jiménez, et al., J. Supercrit. Fluids. 147, 70 (2019).

    Article  Google Scholar 

  23. L. I. Krotova, A. V. Mironov, and V. K. Popov, Sverkhkrit. Flyuidy: Teor. Prakt. 8 (1), 36 (2013).

    Google Scholar 

  24. S. Stoll and A. Schweiger, J. Magn. Reson. 178, 42 (2006).

    Article  ADS  Google Scholar 

  25. W. Wedland and H. Hecht, Reflectance Spectroscopy (Interscience, New York, 1966).

    Google Scholar 

  26. A. I. Kokorin and D. W. Bahnemann, Chemical Physics of Nanostructured Semicontuctors, Ed. by A. I. Kokorin and D. W. Bahnemann (VSP-Brill Acad. Publ., Utrecht, 2003).

  27. S. Livraghi, A. M. Czoska, M. C. Paganini, et al., J. Solid State Chem. 182, 160 (2009).

    Article  ADS  Google Scholar 

  28. A. A. Minnekhanov, D. M. Deygen, E. A. Konstantinova, et al., Nanoscale Res. Lett. 7, 333 (2012).

    Article  ADS  Google Scholar 

  29. T. Shimizu, M. Kumeda, and Y. Kiriyama, Solid State Commun. 37, 699 (1981).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to B. Iversen (Aarhus University, Aarhus, Denmark) for the help in synthesizing SCF samples.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-29-23051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Kashkarov.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konstantinova, E.A., Zaitsev, V.B., Minnekhanov, A.A. et al. The Effect of Spin Center Parameters on the Photoactivity of Nanocrystalline Titanium Dioxide in the Visible Spectral Range. Crystallogr. Rep. 65, 130–137 (2020). https://doi.org/10.1134/S1063774520010113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520010113

Navigation