Skip to main content
Log in

Expression, Purification, Crystallization and X-Ray Crystallographic Analysis of MoDabb1 from Magnaporthe oryzae

  • STRUCTURE OF MACROMOLECULAR COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Protein acetylation is one of the most common post-translational modifications. Many acetylated proteins in Magnaporthe oryzae play key roles in vegetative growth and pathogenicity. MoDabb1 from M. oryzae was also identified to be an acetylated protein, containing a Dabb domain with unknown function. To elucidate the function of this protein and the effect of acetylation on this protein, a native and selenomethionine-substituted MoDabb1 were expressed in Escherichia coli and purified to homogeneity. Crystals were obtained using sitting-drop vapour-diffusion method. Crystals of native and selenomethionine-substituted protein were diffracted to a resolution of 1.74 and 1.98 Å and both belonged to the sp. gr. P42212. Matthews coefficient analysis indicated two molecules in an asymmetric unit with a Vm value of 2.41 and a corresponding solvent content of 49.03%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Drazic, L. M. Myklebust, R. Ree, et al., Biochim. Biophys. Acta 1864, 1372 (2016).

    Article  Google Scholar 

  2. Q. Wang, Y. Zhang, C. Yang, et al., Science 327, 1004 (2010).

    Article  ADS  Google Scholar 

  3. S. Nambi, K. Gupta, M. Bhattacharyya, et al., J. Biol. Chem. 288, 14114 (2013).

    Article  Google Scholar 

  4. S. Zhao, W. Xu, W. Jiang, et al., Science 327, 1000 (2010).

    Article  ADS  Google Scholar 

  5. K. L. Guan and Y. Xiong, Trends Biochem. Sci. 36, 108 (2011).

    Article  Google Scholar 

  6. C. Choudhary, C. Kumar, F. Gnad, et al., Science 325, 834 (2009).

    Article  ADS  Google Scholar 

  7. J. Ren, Y. Sang, Y. Tan, et al., PLOS Pathog. 12, e1005458 (2016).

    Article  Google Scholar 

  8. D. Li, B. Lv, L. Tan, et al., Sci. Rep. 6, 29897 (2016).

    Article  ADS  Google Scholar 

  9. P. Henriksen, S. A. Wagner, B. T. Weinert, et al., Mol. Cell Proteomics 11, 1510 (2012).

    Article  Google Scholar 

  10. G. Wang, L. Guo, W. Liang, et al., AMB Express 7, 94 (2017).

    Article  Google Scholar 

  11. B. Lv, Q. Yang, D. Li, et al., Sci. Rep. 6, 29313 (2016).

    Article  ADS  Google Scholar 

  12. S. Zhou, Q. Yang, C. Yin, et al., BMC Genomics 17, 1019 (2016).

    Article  Google Scholar 

  13. R. Dean, J. A. Van Kan, Z. A. Pretorius, et al., Mol. Plant Pathol. 13, 414 (2012).

    Article  Google Scholar 

  14. R. A. Dean, N. J. Talbot, D. J. Ebbole, et al., Nature 434, 980 (2005).

    Article  ADS  Google Scholar 

  15. X. Sun, Z. Li, H. Liu, et al., Sci. Rep. 7, 15316 (2017).

    Article  ADS  Google Scholar 

  16. Z. Qi, Q. Wang, X. Dou, et al., Mol. Plant Pathol. 13, 677 (2012).

    Article  Google Scholar 

  17. B. C. Osmond, C. A. Specht, and P. W. Robbins, Proc. Natl. Acad. Sci. U.S.A. 96, 11206 (1999).

    Article  ADS  Google Scholar 

  18. Y. Li, X. Yan, H. Wang, et al., Mol. Plant Microbe Interact. 23, 317 (2010).

    Article  Google Scholar 

  19. R. N. Patkar, M. Ramos-Pamplona, A. P. Gupta, et al., Mol. Microbiol. 86, 1345 (2012).

    Article  Google Scholar 

  20. S. F. Altschul, T. L. Madden, A. A. Schäffer, et al., Nucleic Acids Res. 25, 3389 (1997).

    Article  Google Scholar 

  21. R. Gu, S. Fonseca, L. G. Puskas, et al., Tree Physiol. 24, 265 (2004).

    Article  Google Scholar 

  22. A. Walker, J. Taylor, D. Rowe, et al., Plasmid 59, 155 (2008).

    Article  Google Scholar 

  23. Z. Otwinowski and W. Minor, in Methods in Enzymology (Academic Press, 1997), p. 307.

    Google Scholar 

  24. M. D. Winn, C. C. Ballard, K. D. Cowtan, et al., Acta Crystallogr. D: Biol. Crystallogr. 67, 235 (2011).

    Article  Google Scholar 

  25. B. Heras and J. L. Martin, Acta Crystallogr. D: Biol. Crystallogr. 61, 1173 (2005).

    Article  Google Scholar 

  26. B. W. Matthews, J. Mol. Biol. 33, 491 (1968).

    Article  Google Scholar 

  27. D. E. Kim, D. Chivian, and D. Baker, Nucleic Acids Res. 32, W526 (2004).

    Article  Google Scholar 

  28. L. A. Kelley, S. Mezulis, C. M. Yates, et al., Nat. Protoc. 10, 845 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. Arie Geerlof at EMBO for kindly supplying the expression vector pHAT2. We also thank all the staffs from BL18U1 and BL19U1 beamline of National Facility for Protein Science Shanghai (NFPS) at Shanghai Synchrotron Radiation Facility (SSRF) for help with crystal screening and data collection. This research was supported by the National Key Basic Research and Development Program (no. 2017YFD0201705), the National Natural Science Foundation of China (NSFC) (nos. 31471735 and 31772112), and the Taishan Scholar Construction Foundation of Shandong Province (no. 6631114314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Chi, M., Zhang, X. et al. Expression, Purification, Crystallization and X-Ray Crystallographic Analysis of MoDabb1 from Magnaporthe oryzae. Crystallogr. Rep. 64, 1112–1116 (2019). https://doi.org/10.1134/S1063774519070307

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774519070307

Navigation