Skip to main content
Log in

Structure of Zinc Nanotubes

  • LATTICE DYNAMICS AND PHASE TRANSITIONS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The formation of Zn-based nanotubes by electrochemical synthesis in pores of template polymer matrices is considered. It is established that the number of defects in the synthesized nanotubes decreases with a decrease in the mean crystallite size, while the degree of crystallinity increases. The number of defects directly affects the structural properties of Zn nanotubes. However, an uncontrolled growth of nanotubes is observed at a potential difference of 2.0 V, as a result of which amorphous inclusions are formed in the crystal structure of nanotubes, thus leading to their partial destruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. Shao, G. Ji, and P. Chen, J. Membr. Sci. 255, 1 (2005).

    Article  Google Scholar 

  2. M. J. Edmondson, W. Z. Zhou, S. A. Sieber, et al., Adv. Mater. 13, 1608 (2001).

    Article  Google Scholar 

  3. K. Nielsch, R. B. Wehrspohn, J. Barthel, et al., Appl. Phys. Lett. 79, 1360 (2001).

    Article  ADS  Google Scholar 

  4. K. R. Murali, Mater. Lett. 59, 15 (2005).

    Article  Google Scholar 

  5. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, Nano Lett. 2 (9), 983 (2002).

    Article  ADS  Google Scholar 

  6. S. Ramanathan, S. Patibandla, S. Bandyopadhyay, et al., J. Mater. Sci. Mater. Electron. 17, 651 (2006).

    Article  Google Scholar 

  7. X. H. Han, G. Z. Wang, Q. Tao, et al., Appl. Phys. Lett. 86, 223106 (2005).

    Article  ADS  Google Scholar 

  8. K. P. Hui, S. Y. Bong, P. Sanghyun, et al., J. Alloys Compd., No. 605, 124 (2014).

  9. W. I. Park, J. S. Kim, G. C. Yi, and H. J. Lee, Adv. Mater. 17, 1393 (2005).

    Article  Google Scholar 

  10. A. C. Mofor, A. Bakin, U. Chejarla, et al., Superlattices Microstruct. 42, 415 (2007).

    Article  ADS  Google Scholar 

  11. D. J. Park, J. Y. Lee, D. C. Kim, et al., Appl. Phys. Lett. 91, 143115 (2007).

    Article  ADS  Google Scholar 

  12. S. A. Studenikin, N. Golege, and M. Cocivera, J. Appl. Phys. 83 (4), 2104 (1998).

    Article  ADS  Google Scholar 

  13. R. Asomoza, H. Malodonado, and M. D. Olvera, J. Mater. Sci. Mater. Electron. 11 (5), 383 (2000).

    Google Scholar 

  14. Z. Y. Fan, D. Dutta, C. J. Chien, et al., Appl. Phys. Lett. 89, 213110 (2006).

    Article  ADS  Google Scholar 

  15. A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, Nano Lett. 7, 2183 (2007).

    Article  ADS  Google Scholar 

  16. M. Grundmann and J. Zúñiga-Pérez, Phys. Status Solidi B 253 (2), 351 (2016).

    Article  ADS  Google Scholar 

  17. Q. Yan, P. Rinke, M. Winkelnkemper, et al., Appl. Phys. Lett. 101 (15), 152105 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Zdorovets.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zdorovets, M.V., Kozlovskiy, A.L. Structure of Zinc Nanotubes. Crystallogr. Rep. 64, 615–620 (2019). https://doi.org/10.1134/S1063774519040278

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774519040278

Navigation