Advertisement

Crystallography Reports

, Volume 64, Issue 3, pp 479–483 | Cite as

Production of Complex Hydrosulphates in the K3H(SO4)2–Rb3H(SO4)2 Series: Part I

  • V. A. KomornikovEmail author
  • V. V. Grebenev
  • I. S. Timakov
  • D. A. Ksenofontov
  • P. V. Andreev
  • I. P. Makarova
  • E. V. Selezneva
CRYSTAL GROWTH
  • 11 Downloads

Abstract

The phase equilibria in the K3H(SO4)2–Rb3H(SO4)2–H2O cross section have been investigated under isothermal conditions at 25°C. The concentration limits of crystallization of solid solutions with the general formulas (Rb1 – xKx)3H(SO4)2 and (Rb1 – xKx)2SO4 are determined. The dependences of the equilibria of saturated solution on the initial production conditions are revealed. The growth conditions for large single crystals of complex acid rubidium–potassium sulfates are determined.

Notes

ACKNOWLEDGMENTS

Experimental studies were carried out using equipment of the Shared Equipment Center of the Shubnikov Institute of Crystallography, Russian Academy of Sciences.

FUNDING

This study was supported by the Russian Foundation for Basic Research (project no. 17-53-45107) in the part concerning the characterization of crystals and by the Ministry of Science and Higher Education of the Russian Federation in the part concerning the crystal growth, within the government research contract with the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences. Experimental studies were supported by the Ministry of Higher Education and Science of the Russian Federation (project no. RFMEFI62114X0005).

REFERENCES

  1. 1.
    A. I. Baranov, L. A. Shuvalov, and N. M. Shchagina, Pis’ma Zh. Eksp. Teor. Fiz. 36 (11), 381 (1982).Google Scholar
  2. 2.
    A. I. Baranov, Crystallogr. Rep. 48 (6), 1012 (2003).CrossRefGoogle Scholar
  3. 3.
    A. K. Ivanov-Shits and I. V. Murin, Solid-State Ionics (Izd-vo SPbGU, St. Petersburg, 2010) [in Russian], Vol. 2.Google Scholar
  4. 4.
    T. Norby, Nature 410, 877 (2001).CrossRefGoogle Scholar
  5. 5.
    R. Fitzergerald, Phys. Today 54, 21 (2001).CrossRefGoogle Scholar
  6. 6.
    A. I. Baranov, V. V. Grebenev, U. Bismaer, and J. Ludwig, Ferroelectrics 369, 108 (2008).CrossRefGoogle Scholar
  7. 7.
    I. P. Makarova, T. S. Chernaya, A. A. Filaretov, et al., Crystallogr. Rep. 55 (3), 393 (2010).CrossRefGoogle Scholar
  8. 8.
    E. V. Dmitricheva, I. P. Makarova, V. V. Grebenev, et al., Crystallogr. Rep. 59 (6), 878 (2014).CrossRefGoogle Scholar
  9. 9.
    C. Panithipongwut and S. M. Haile, Solid State Ionics 213, 53 (2012).CrossRefGoogle Scholar
  10. 10.
    L. A. Cowan, R. M. Morcos, N. Hatada, et al., Solid State Ionics 179, 305 (2008).CrossRefGoogle Scholar
  11. 11.
    V. A. Komornikov, V. V. Grebenev, P. V. Andreev, and E. V. Dmitricheva, Crystallogr. Rep. 60 (3), 431 (2015).CrossRefGoogle Scholar
  12. 12.
    V. A. Komornikov, V. V. Grebenev, I. P. Makarova, et al., Crystallogr. Rep. 61 (4), 675 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • V. A. Komornikov
    • 1
    Email author
  • V. V. Grebenev
    • 1
  • I. S. Timakov
    • 1
  • D. A. Ksenofontov
    • 2
  • P. V. Andreev
    • 3
  • I. P. Makarova
    • 1
  • E. V. Selezneva
    • 1
  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations