X-Ray, Synchrotron and Mass-Spectrometric Methods for the Study of Ceramic Objects of Cultural Heritage


Fragments of stamped amphorae (south Pontic (Sinope, III–I BC) and Mediterranean (Thasos, IV–III BC, and, presumably, Chios, III–II BC)), found in excavations on the Crimean Peninsula, have been investigated using X-ray diffraction, generalized semiquantitative X-ray fluorescence analysis, and inductively coupled plasma mass spectrometry. The data obtained have been subjected to comparative analysis. A comparison of the mineralogical and elemental compositions of samples has revealed the characteristic distinctions between the products fabricated at different ancient pottery centers.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    A. N. Shcheglov and N. B. Selivanova, Greek Amphoraes, Ed. by V. I. Kats and S. Yu. Monakhov (Izd-vo Saratov Gos. Univ., Saratov, 1992), p. 32 [in Russian].

    Google Scholar 

  2. 2

    A. O. Shepard, Ceramics for Archaeologists (Carnegie Inst., Washington, 1956).

    Google Scholar 

  3. 3

    Y. Garlan and H. Kara, Les Timbres Céramiques Sinopéens sur Amphores et sur Tuiles Trouvés à Sinope. Présentation et Catalogue (AnatAnt, Paris, 2004).

    Google Scholar 

  4. 4

    D. Kassab Tezgör, Historique et Présentation des Fouilles de l’Atelier de Demirci (AnatAnt, Paris, 2009).

    Google Scholar 

  5. 5

    I. B. Zeest, Bosporus Ceramic Vessels. Materials and Studies on the Archaeology of the Soviet Union, No. 83 (Nauka, Moscow, 1960) [in Russian].

  6. 6

    N. F. Fedoseev, Antichnyi Mir Arkheol., No. 14, 339 (2010).

  7. 7

    V. I. Kats, Ceramic Stamps of Tauric Chersonese, Ed. by S. Yu. Monakhov (Izd-vo Saratov Gos. Univ., Saratov, 1994) [in Russian].

    Google Scholar 

  8. 8

    V. I. Molodin and L. N. Myl’nikova, Samarskii Nauch. Vestn., No. 3 (12), 122 (2015).

  9. 9

    V. O. Koz’minykh, I. N. Ganebnykh, O. S. El’tsov, and A. A. Kruglova, Privolzhskii Nauch. Vestn., No. 3–1 (43), 8 (2015).

  10. 10

    A. Hein, H. Mommsen, and J. Maran, J. Archaeol. Sci., No. 26 (8), 1053 (1999).

  11. 11

    M. J. Feliu, M. C. Edreira, and J. Martin, Anal. Chim. Acta 502 (2), 241 (2004).

    Article  Google Scholar 

  12. 12

    D. N. Papadopoulou, M. Lalia-Kantouri, N. Kantiranis, and J. A. Stratis, J. Therm. Anal. Calorim. 84 (1), 39 (2006).

    Article  Google Scholar 

  13. 13

    P. Bastie, B. Hamelin, F. Fiori, et al., Measur. Sci. Tech., No. 17, L1 (2006).

  14. 14

    J. Riederer, Hyperfine Interact., No. 154, 143 (2004).

  15. 15

    A. V. Bakhtiyarov, X-Ray Spectroscopic Fluorescent Analysis in Geology and Geochemistry (Nedra, Moscow, 1985) [in Russian].

    Google Scholar 

  16. 16

    A. Iordanidis, J. Garcia-Guinea, and G. Karamitrou-Mentessidi, Mater. Charact., No. 60, 292 (2009).

  17. 17

    V. O. Ponomarenko, D. A. Sarychev, and L. N. Vodolazhskaya, Vestn.Yuzhn. Nauch. Tsentra Ross. Akad. Nauk, 8 (1), 9 (2012).

    Google Scholar 

  18. 18

    V. E. Medvedev and I. V. Filatova, Teor. Prakt. Arkheol. Issled., No. 3 (19), 150 (2017).

  19. 19

    P. E. Belousov, Yu. I. Bocharnikova, and N. M. Boeva, Vestn. RUDN, No. 4, 94 (2015).

    Google Scholar 

  20. 20

    V. A. Drebushchak, L. N. Myl’nikova, and T. N. Drebushchak, Physicochemical Study of Ceramics from the Chronologically Transitional (Bronze‒Iron Age) Sites (Izd-vo SO RAN, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  21. 21

    L. Maritan, L. Nodari, C. Mazzoli, et al., Appl. Clay Sci. 31 (1–2), 1 (2006).

    Article  Google Scholar 

  22. 22

    G. Cultrone, C. Rodriguez-Navarro, E. Sebastian, et al., Eur. J. Mineral. 13, 621 (2001).

    Article  ADS  Google Scholar 

  23. 23

    R. Scarpelli, Robin. J. H. Clark, and A. M. De Francesco, Spectrochim. Acta A 120, 60 (2014).

    Article  Google Scholar 

  24. 24

    M. Maggetti, C. Neururer, and D. Ramseyer, Appl. Clay Sci. 53, 500 (2011).

    Article  Google Scholar 

  25. 25

    M. T. Kasymova and G. T. Oruzbaeva, Vestn. KRSU 17 (8), 112 (2017).

    Google Scholar 

  26. 26

    I. M. Potasheva and S. A. Svetov, Tr. Karel’skogo Nauch. Tsentra Ross. Akad. Nauk, No. 4, 136 (2013).

    Google Scholar 

  27. 27

    I. M. Potasheva and S. A. Svetov, Proc. Petrozavodsk State Univ., No. 4 (141), 71 (2014).

  28. 28

    I. M. Summanen and S. A. Svetov, Uch. Zap. Petrozavodskogo Gos. Univ., No. 1 (162), 18 (2017).

  29. 29

    N. C. Little, L. J. Kosakowsky, R. J. Speakman, et al., J. Radio Anal. Nucl. Chem. 262 (1), 103 (2004).

    Article  Google Scholar 

  30. 30

    A. Hein, V. Georgopoulou, E. Nodarou, et al., J. Archaeol. Sci., No. 35, 1049 (2008).

  31. 31

    I. M. Potasheva, S. Yu. Chazhengina, and S. A. Svetov, Uch. Zap. Petrozavodskogo Gos. Univ., No. 8 (137), 44 (2013).

  32. 32

    V. Georgopoulou, Ph. D. Thesis (University of Athens, 2006) [in Greek]).

  33. 33

    A. V. Mandrykina, D. N. Khmelenin, N. N. Kolobylina, et al., Crystallogr. Rep. 63 (5), 849 (2018).

    Article  ADS  Google Scholar 

  34. 34

    V. G. Kon, P. A. Prosekov, A. Yu. Seregin, et al., Crystallogr. Rep. 64 (1), 24 (2019).

    Article  ADS  Google Scholar 

  35. 35

    V. A. Sole, E. Papillon, M. Cotte, et al., Spectrochim. Acta B 62, 63 (2007).

    Article  ADS  Google Scholar 

  36. 36

    K. Chinnathambi, Miniflex Guidance (2018).

  37. 37

    PDXL 2: Advanced Integrated X-ray Powder Diffraction Suite, The Rigaku J. 28 (1), 29 (2012).

  38. 38

    V. Petricek, M. Dusek, and L. Palatinus, Z. Kristallogr. 229 (5), 345 (2014).

    Google Scholar 

  39. 39

    D. M. Kheiker, M. V. Koval’chuk, V. N. Korchuganov, et al., Crystallogr. Rep. 52 (6), 1108 (2007).

    Article  ADS  Google Scholar 

  40. 40

    A. P. Hammersley, FIT2D V9.129 Reference Manual. V3.1 (1998).

  41. 41

    H. Putz and K. Brandenburg, Match–Phase Identification from Powder Diffraction. Crystal Impact Software (2015).

    Google Scholar 

  42. 42

    C. R. Hubbard, E. H. Evans, and D. K. Smith, J. Appl. Crystallogr. 9 (2), 169 (1976).

    Article  Google Scholar 

  43. 43

    D. Kutscher, J. D. Wills, and S. M. Ducos, Thermo Fisher Scientific. Technical Note 43279 (Bremen, Germany). https://assets.thermofisher.com/TFS-Assets/CMD/Technical-Notes/tn-43279-icp-ms-isds-nanparticle-tn43279-en.pdf.

  44. 44

    I. I. Chaikovskii, A. T. Sirazetdinov, and O. S. Kablinov, Nauch. Chteniya Pamyati P. N. Chirvinskogo, No. 11, 67 (2008).

    Google Scholar 

  45. 45

    B. Fabbri, S. Gualtieri, and S. Shoval, J. Eur. Ceram. Soc. 34 (7), 1899 (2014).

    Article  Google Scholar 

  46. 46

    L. Renetal, Appl. Geochem. 56, 80 (2015).

    Article  Google Scholar 

Download references


This study was performed using equipment of the Collective-Use Center “Structural Diagnostics of Materials” of the Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, and the KSRS of the National Research Centre “Kurchatov Institute.”

The study was supported in part by the Russian Foundation for Basic Research, project no. 17-29-04201, and the Ministry of Science and Higher Education of the Russian Federation within a Government research contract with the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences.

Author information



Corresponding author

Correspondence to A. M. Antipin.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antipin, A.M., Kvartalov, V.B., Svetogorov, R.D. et al. X-Ray, Synchrotron and Mass-Spectrometric Methods for the Study of Ceramic Objects of Cultural Heritage. Crystallogr. Rep. 64, 515–523 (2019). https://doi.org/10.1134/S1063774519030039

Download citation