Crystallography Reports

, Volume 64, Issue 3, pp 515–523 | Cite as

X-Ray, Synchrotron and Mass-Spectrometric Methods for the Study of Ceramic Objects of Cultural Heritage

  • A. M. AntipinEmail author
  • V. B. Kvartalov
  • R. D. Svetogorov
  • A. Yu. Seregin
  • N. F. Fedoseev
  • E. Yu. Tereschenko
  • O. A. Alekseeva
  • E. B. Yatsishina


Fragments of stamped amphorae (south Pontic (Sinope, III–I BC) and Mediterranean (Thasos, IV–III BC, and, presumably, Chios, III–II BC)), found in excavations on the Crimean Peninsula, have been investigated using X-ray diffraction, generalized semiquantitative X-ray fluorescence analysis, and inductively coupled plasma mass spectrometry. The data obtained have been subjected to comparative analysis. A comparison of the mineralogical and elemental compositions of samples has revealed the characteristic distinctions between the products fabricated at different ancient pottery centers.



This study was performed using equipment of the Collective-Use Center “Structural Diagnostics of Materials” of the Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, and the KSRS of the National Research Centre “Kurchatov Institute.”

The study was supported in part by the Russian Foundation for Basic Research, project no. 17-29-04201, and the Ministry of Science and Higher Education of the Russian Federation within a Government research contract with the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences.


  1. 1.
    A. N. Shcheglov and N. B. Selivanova, Greek Amphoraes, Ed. by V. I. Kats and S. Yu. Monakhov (Izd-vo Saratov Gos. Univ., Saratov, 1992), p. 32 [in Russian].Google Scholar
  2. 2.
    A. O. Shepard, Ceramics for Archaeologists (Carnegie Inst., Washington, 1956).Google Scholar
  3. 3.
    Y. Garlan and H. Kara, Les Timbres Céramiques Sinopéens sur Amphores et sur Tuiles Trouvés à Sinope. Présentation et Catalogue (AnatAnt, Paris, 2004).Google Scholar
  4. 4.
    D. Kassab Tezgör, Historique et Présentation des Fouilles de l’Atelier de Demirci (AnatAnt, Paris, 2009).Google Scholar
  5. 5.
    I. B. Zeest, Bosporus Ceramic Vessels. Materials and Studies on the Archaeology of the Soviet Union, No. 83 (Nauka, Moscow, 1960) [in Russian].Google Scholar
  6. 6.
    N. F. Fedoseev, Antichnyi Mir Arkheol., No. 14, 339 (2010).Google Scholar
  7. 7.
    V. I. Kats, Ceramic Stamps of Tauric Chersonese, Ed. by S. Yu. Monakhov (Izd-vo Saratov Gos. Univ., Saratov, 1994) [in Russian].Google Scholar
  8. 8.
    V. I. Molodin and L. N. Myl’nikova, Samarskii Nauch. Vestn., No. 3 (12), 122 (2015).Google Scholar
  9. 9.
    V. O. Koz’minykh, I. N. Ganebnykh, O. S. El’tsov, and A. A. Kruglova, Privolzhskii Nauch. Vestn., No. 3–1 (43), 8 (2015).Google Scholar
  10. 10.
    A. Hein, H. Mommsen, and J. Maran, J. Archaeol. Sci., No. 26 (8), 1053 (1999).Google Scholar
  11. 11.
    M. J. Feliu, M. C. Edreira, and J. Martin, Anal. Chim. Acta 502 (2), 241 (2004).CrossRefGoogle Scholar
  12. 12.
    D. N. Papadopoulou, M. Lalia-Kantouri, N. Kantiranis, and J. A. Stratis, J. Therm. Anal. Calorim. 84 (1), 39 (2006).CrossRefGoogle Scholar
  13. 13.
    P. Bastie, B. Hamelin, F. Fiori, et al., Measur. Sci. Tech., No. 17, L1 (2006).Google Scholar
  14. 14.
    J. Riederer, Hyperfine Interact., No. 154, 143 (2004).Google Scholar
  15. 15.
    A. V. Bakhtiyarov, X-Ray Spectroscopic Fluorescent Analysis in Geology and Geochemistry (Nedra, Moscow, 1985) [in Russian].Google Scholar
  16. 16.
    A. Iordanidis, J. Garcia-Guinea, and G. Karamitrou-Mentessidi, Mater. Charact., No. 60, 292 (2009).Google Scholar
  17. 17.
    V. O. Ponomarenko, D. A. Sarychev, and L. N. Vodolazhskaya, Vestn.Yuzhn. Nauch. Tsentra Ross. Akad. Nauk, 8 (1), 9 (2012).Google Scholar
  18. 18.
    V. E. Medvedev and I. V. Filatova, Teor. Prakt. Arkheol. Issled., No. 3 (19), 150 (2017).Google Scholar
  19. 19.
    P. E. Belousov, Yu. I. Bocharnikova, and N. M. Boeva, Vestn. RUDN, No. 4, 94 (2015).Google Scholar
  20. 20.
    V. A. Drebushchak, L. N. Myl’nikova, and T. N. Drebushchak, Physicochemical Study of Ceramics from the Chronologically Transitional (Bronze‒Iron Age) Sites (Izd-vo SO RAN, Novosibirsk, 2006) [in Russian].Google Scholar
  21. 21.
    L. Maritan, L. Nodari, C. Mazzoli, et al., Appl. Clay Sci. 31 (1–2), 1 (2006).CrossRefGoogle Scholar
  22. 22.
    G. Cultrone, C. Rodriguez-Navarro, E. Sebastian, et al., Eur. J. Mineral. 13, 621 (2001).CrossRefGoogle Scholar
  23. 23.
    R. Scarpelli, Robin. J. H. Clark, and A. M. De Francesco, Spectrochim. Acta A 120, 60 (2014).CrossRefGoogle Scholar
  24. 24.
    M. Maggetti, C. Neururer, and D. Ramseyer, Appl. Clay Sci. 53, 500 (2011).CrossRefGoogle Scholar
  25. 25.
    M. T. Kasymova and G. T. Oruzbaeva, Vestn. KRSU 17 (8), 112 (2017).Google Scholar
  26. 26.
    I. M. Potasheva and S. A. Svetov, Tr. Karel’skogo Nauch. Tsentra Ross. Akad. Nauk, No. 4, 136 (2013).Google Scholar
  27. 27.
    I. M. Potasheva and S. A. Svetov, Proc. Petrozavodsk State Univ., No. 4 (141), 71 (2014).Google Scholar
  28. 28.
    I. M. Summanen and S. A. Svetov, Uch. Zap. Petrozavodskogo Gos. Univ., No. 1 (162), 18 (2017).Google Scholar
  29. 29.
    N. C. Little, L. J. Kosakowsky, R. J. Speakman, et al., J. Radio Anal. Nucl. Chem. 262 (1), 103 (2004).CrossRefGoogle Scholar
  30. 30.
    A. Hein, V. Georgopoulou, E. Nodarou, et al., J. Archaeol. Sci., No. 35, 1049 (2008).Google Scholar
  31. 31.
    I. M. Potasheva, S. Yu. Chazhengina, and S. A. Svetov, Uch. Zap. Petrozavodskogo Gos. Univ., No. 8 (137), 44 (2013).Google Scholar
  32. 32.
    V. Georgopoulou, Ph. D. Thesis (University of Athens, 2006) [in Greek]).Google Scholar
  33. 33.
    A. V. Mandrykina, D. N. Khmelenin, N. N. Kolobylina, et al., Crystallogr. Rep. 63 (5), 849 (2018).CrossRefGoogle Scholar
  34. 34.
    V. G. Kon, P. A. Prosekov, A. Yu. Seregin, et al., Crystallogr. Rep. 64 (1), 24 (2019).CrossRefGoogle Scholar
  35. 35.
    V. A. Sole, E. Papillon, M. Cotte, et al., Spectrochim. Acta B 62, 63 (2007).CrossRefGoogle Scholar
  36. 36.
    K. Chinnathambi, Miniflex Guidance (2018).Google Scholar
  37. 37.
    PDXL 2: Advanced Integrated X-ray Powder Diffraction Suite, The Rigaku J. 28 (1), 29 (2012).Google Scholar
  38. 38.
    V. Petricek, M. Dusek, and L. Palatinus, Z. Kristallogr. 229 (5), 345 (2014).Google Scholar
  39. 39.
    D. M. Kheiker, M. V. Koval’chuk, V. N. Korchuganov, et al., Crystallogr. Rep. 52 (6), 1108 (2007).CrossRefGoogle Scholar
  40. 40.
    A. P. Hammersley, FIT2D V9.129 Reference Manual. V3.1 (1998).Google Scholar
  41. 41.
    H. Putz and K. Brandenburg, Match–Phase Identification from Powder Diffraction. Crystal Impact Software (2015).Google Scholar
  42. 42.
    C. R. Hubbard, E. H. Evans, and D. K. Smith, J. Appl. Crystallogr. 9 (2), 169 (1976).CrossRefGoogle Scholar
  43. 43.
    D. Kutscher, J. D. Wills, and S. M. Ducos, Thermo Fisher Scientific. Technical Note 43279 (Bremen, Germany). Scholar
  44. 44.
    I. I. Chaikovskii, A. T. Sirazetdinov, and O. S. Kablinov, Nauch. Chteniya Pamyati P. N. Chirvinskogo, No. 11, 67 (2008).Google Scholar
  45. 45.
    B. Fabbri, S. Gualtieri, and S. Shoval, J. Eur. Ceram. Soc. 34 (7), 1899 (2014).CrossRefGoogle Scholar
  46. 46.
    L. Renetal, Appl. Geochem. 56, 80 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. M. Antipin
    • 1
    Email author
  • V. B. Kvartalov
    • 1
  • R. D. Svetogorov
    • 2
  • A. Yu. Seregin
    • 1
    • 2
  • N. F. Fedoseev
    • 3
  • E. Yu. Tereschenko
    • 1
    • 2
  • O. A. Alekseeva
    • 1
  • E. B. Yatsishina
    • 2
  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of SciencesMoscowRussia
  2. 2.National Research Centre “Kurchatov Institute”MoscowRussia
  3. 3.Institute of Archaeology of CrimeaSimferopolRussia

Personalised recommendations