Modeling of Phosphoribosylpyrophosphate Synthetase from Thermus Thermophilus in Complex with ATP and Ribose 5-Phosphate

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


The positions of the substrates (ATP and ribose 5 phosphate) of phosphoribosylpyrophosphate synthetase from Thermus thermophilus were determined by molecular dynamics simulations. The simulation brought the system to an equilibrium state, with the binding poses of the ligands in the active site being stable. Based on the results of simulation of the complex, the environment of the substrates was analyzed and the amino-acid residues of the enzyme that form polar interactions with the substrates were identified. Candidate sites for mutagenesis, which can be mutated in order to broaden the substrate specificity toward ribose 5-phosphate, are proposed.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    H. G. Khorana, J. F. Fernandes, and A. Kornberg, J. Biol. Chem. 230, 941 (1958).

    Google Scholar 

  2. 2

    R. L. Switzer, J. Biol. Chem. 244, 2854 (1969).

    Google Scholar 

  3. 3

    M. A. Becker, K. O. Raivio, B. Bakay, et al., J. Clin. Invest. 65, 109 (1980).

    Article  Google Scholar 

  4. 4

    B. Hove-Jensen and P. Nygaard, Eur. J. Biochem. 126, 327 (1982).

    Article  Google Scholar 

  5. 5

    B. Hove-Jensen, Mol. Microbiol. 3, 1487 (1983).

    Article  Google Scholar 

  6. 6

    B. Hove-Jensen, J. Bacteriol. 170, 1148 (1988).

    Article  Google Scholar 

  7. 7

    T. A. Eriksen, A. Kadziola, A. K. Bentsen, et al., Nat. Struct. Biol. 7, 303 (2000).

    Article  Google Scholar 

  8. 8

    A. I. Mikhailopulo and A. I. Miroshnikov, Acta Nature 10, 36 (2010).

    Google Scholar 

  9. 9

    M. M. Cherney, L. T. Cherney, C. R. Garen, et al., J. Mol. Biol. 413, 844 (2011).

    Article  Google Scholar 

  10. 10

    V. I. Timofeev, E. V. Sinitsyna, M. A. Kostromina, et al., Acta Crystallogr. F 73, 369 (2017).

    Article  Google Scholar 

  11. 11

    P. Emsley, B. Lohkamp, W. G. Scottc, et al., Acta Crystallogr. D 66, 486 (2010).

    Article  Google Scholar 

  12. 12

    J. Huang, S. Rauscher, G. Nawrocki, et al., Nat. Methods 14, 71 (2016).

    Article  Google Scholar 

  13. 13

    B. Hess, C. Kutzner, D. van der Spoel, et al., Chem. Theory Comput. 4, 435 (2008).

    Article  Google Scholar 

  14. 14

    S. Jo, T. Kim, V. G. Iyer, et al., J. Comput. Chem. 29, 1859 (2008).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. I. Timofeev.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Podshivalov, D.D., Sidorov-Biryukov, D.D., Timofeev, V.I. et al. Modeling of Phosphoribosylpyrophosphate Synthetase from Thermus Thermophilus in Complex with ATP and Ribose 5-Phosphate. Crystallogr. Rep. 64, 94–97 (2019).

Download citation