Advertisement

Crystallography Reports

, Volume 64, Issue 1, pp 94–97 | Cite as

Modeling of Phosphoribosylpyrophosphate Synthetase from Thermus Thermophilus in Complex with ATP and Ribose 5-Phosphate

  • D. D. Podshivalov
  • D. D. Sidorov-Biryukov
  • V. I. TimofeevEmail author
  • A. A. Litunov
  • M. A. Kostromina
  • K. V. Sinitsyna
  • T. I. Muravieva
  • I. P. Kuranova
  • R. S. Esipov
STRUCTURE OF MACROMOLECULAR COMPOUNDS

Abstract

The positions of the substrates (ATP and ribose 5 phosphate) of phosphoribosylpyrophosphate synthetase from Thermus thermophilus were determined by molecular dynamics simulations. The simulation brought the system to an equilibrium state, with the binding poses of the ligands in the active site being stable. Based on the results of simulation of the complex, the environment of the substrates was analyzed and the amino-acid residues of the enzyme that form polar interactions with the substrates were identified. Candidate sites for mutagenesis, which can be mutated in order to broaden the substrate specificity toward ribose 5-phosphate, are proposed.

Notes

REFERENCES

  1. 1.
    H. G. Khorana, J. F. Fernandes, and A. Kornberg, J. Biol. Chem. 230, 941 (1958).Google Scholar
  2. 2.
    R. L. Switzer, J. Biol. Chem. 244, 2854 (1969).Google Scholar
  3. 3.
    M. A. Becker, K. O. Raivio, B. Bakay, et al., J. Clin. Invest. 65, 109 (1980).CrossRefGoogle Scholar
  4. 4.
    B. Hove-Jensen and P. Nygaard, Eur. J. Biochem. 126, 327 (1982).CrossRefGoogle Scholar
  5. 5.
    B. Hove-Jensen, Mol. Microbiol. 3, 1487 (1983).CrossRefGoogle Scholar
  6. 6.
    B. Hove-Jensen, J. Bacteriol. 170, 1148 (1988).CrossRefGoogle Scholar
  7. 7.
    T. A. Eriksen, A. Kadziola, A. K. Bentsen, et al., Nat. Struct. Biol. 7, 303 (2000).CrossRefGoogle Scholar
  8. 8.
    A. I. Mikhailopulo and A. I. Miroshnikov, Acta Nature 10, 36 (2010).Google Scholar
  9. 9.
    M. M. Cherney, L. T. Cherney, C. R. Garen, et al., J. Mol. Biol. 413, 844 (2011).CrossRefGoogle Scholar
  10. 10.
    V. I. Timofeev, E. V. Sinitsyna, M. A. Kostromina, et al., Acta Crystallogr. F 73, 369 (2017).CrossRefGoogle Scholar
  11. 11.
    P. Emsley, B. Lohkamp, W. G. Scottc, et al., Acta Crystallogr. D 66, 486 (2010).CrossRefGoogle Scholar
  12. 12.
    J. Huang, S. Rauscher, G. Nawrocki, et al., Nat. Methods 14, 71 (2016).CrossRefGoogle Scholar
  13. 13.
    B. Hess, C. Kutzner, D. van der Spoel, et al., Chem. Theory Comput. 4, 435 (2008).CrossRefGoogle Scholar
  14. 14.
    S. Jo, T. Kim, V. G. Iyer, et al., J. Comput. Chem. 29, 1859 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • D. D. Podshivalov
    • 1
    • 2
    • 3
  • D. D. Sidorov-Biryukov
    • 1
    • 2
  • V. I. Timofeev
    • 1
    • 2
    • 3
    Email author
  • A. A. Litunov
    • 1
  • M. A. Kostromina
    • 1
  • K. V. Sinitsyna
    • 1
  • T. I. Muravieva
    • 1
  • I. P. Kuranova
    • 1
    • 2
    • 3
  • R. S. Esipov
    • 1
  1. 1.Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of MoscowMoscowRussia
  2. 2.Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” Russian Academy of SciencesMoscowRussia
  3. 3.National Research Centre “Kurchatov Institute,”MoscowRussia

Personalised recommendations