Abstract
Models of E. coli thymidine phosphorylase in complexes with the substrates — the complex with phosphate and the complex with phosphate and thymidine — were obtained by molecular docking calculations. The influence of the substrates on domain movements in the dimeric thymidine phosphorylase molecule was probed by molecular dynamics simulations. The two subunits were shown to function asynchronously. In the thymidine phosphorylase/phosphate and thymidine phosphorylase/phosphate/thymidine complexes, phosphate is more weakly bound in the active site and moves away from the phosphate-binding site during the 60-ns trajectory, whereas thymidine remains in the active site but undergoes conformational changes.
This is a preview of subscription content, log in to check access.






REFERENCES
- 1
M. J. Pugmire and S. E. Ealick, Biochem. J. 361, 1 (2002).
- 2
M. Ligo, K. Nishikata, Y. Nakajiama, et al., Biochem. Pharmacol. 39 (7), 1247 (1990).
- 3
A. Yoshimura, Y. Kuwazuru, T. Furukawa, et al., Biochim. Biophys. Acta 1034, 107 (1990).
- 4
K. Usuki, J. Saras, J. Waltenberger, et al., Biochem. Biophys. Res. Commun. 184, 1311 (1992).
- 5
S. Akiyama, T. Furukawa, T. Sumizawa, et al., Cancer Sci. 95 (11), 851 (2004).
- 6
E. L. Schwartz, N. Baptiste, S. Megati, et al., Cancer Res. 55, 3543 (1995).
- 7
M. R. Walter, W. J. Cook, L. B. Cole, et al., J. Biol. Chem. 265, 14016 (1990).
- 8
M. J. Pugmire, W. J. Cook, A. Jasanoff, et al., J. Mol. Biol. 281, 285 (1998).
- 9
V. I. Timofeev, Yu. A. Abramchik, I. V. Fateev, et al., Crystallogr. Rep. 58 (6), 842 (2013).
- 10
M. J. Pugmire and S. E. Ealick, Structure 6, 1467 (1998).
- 11
R. A. Norman, S. T. Barry, M. Bate, et al., Structure 12, 75 (2004).
- 12
Omari. K. El, A. Bronckaers, S. Liekens, et al., Biochem. J. 399, 199 (2006).
- 13
M. J. Pugmire and S. E. Ealick, Biochem. J. 361, 1 (2002).
- 14
S. W. Rick, Y. G. Abashkin, R. L. Hilderbrandt, and S. K. Burt, PROTEINS: Struct., Funct., Genet. 37, 242 (1999).
- 15
O. Trott and A. J. Olson, J. Comput. Chem. 31, 455 (2010).
- 16
V. Timofeev, Yu. Abramchik, N. Zhukhlistova, et al., Acta Crystallogr. D 70, 1155 (2014).
- 17
I. Soteras Gutierrez, F.-Y. Lin, K. Vanommeslaeghe, et al., Bioorg. Med. Chem. (2016).
- 18
W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., J. Chem. Phys. 79, 926 (1983).
- 19
H. J. C. Berendsen, J. P. M. Postma, Gunsteren. W. F. van, et al., J. Chem. Phys. 81 (8), 3684 (1984). Bibcode:1984JChPh..81.3684B. https://doi.org/10.1063/1.448118
- 20
M. Parrinello and A. Rahman, J. Chem. Phys. 76 (5), 2662 (1982).
- 21
J. Mendieta, S. Martín-Santamaría, E.-M. Priego, et al., Biochemistry 43 (2), 409 (2004).
- 22
N. G. Panova, K. S. Alekseev, A. S. Kuz’michev, et al., Biokhimiya 72 (1), 27 (2007).
- 23
N. Burton, M. Harrison, J. Hart, et al., Faraday Discuss. 110, 463 (1998).
ACKNOWLEDGMENTS
This work was supported by the Ministry of Science and Higher Education within the State assignment FSRC “Crystallography and Photonics” RAS.
Author information
Affiliations
Corresponding author
Additional information
Translated by T. Safonova
Rights and permissions
About this article
Cite this article
Sidorov-Biryukov, D.D., Podshivalov, D.D., Timofeev, V.I. et al. Molecular Dynamics Study of Thymidine Phosphorylase from E. coli in the Apo Form and in Complexes with Substrates. Crystallogr. Rep. 64, 98–104 (2019). https://doi.org/10.1134/S1063774518060287
Received:
Revised:
Accepted:
Published:
Issue Date: