Crystallography Reports

, Volume 63, Issue 6, pp 951–954 | Cite as

Preliminary X-ray Diffraction Study of Macrophage Migration Inhibitory Factor at Near-Atomic Resolution

  • K. M. Dubova
  • A. V. Sokolov
  • N. P. Gorbunov
  • V. R. SamyginaEmail author


Crystals of human macrophage migration inhibitory factor in complexes with phenyl isothiocyanate and tartrate were grown by the capillary counter-diffusion method under microgravity conditions. The preliminary X-ray diffraction study of these complexes was performed at near-atomic resolution (1.16 Å).



We thank Dr. K. Inaka for assistance in collecting X-ray diffraction data sets at the Spring-8 synchrotron radiation facility.

This study was supported by the Federal Agency for Scientific Organizations (agreement no. 007-ГЗ/Ч3363/26; screening of crystallization conditions), the Russian Foundation for Basic Research (project no. 16-04-01182 supporting the isolation and purification of the protein and the preparation of the MIF–PITC modification) and was performed within the framework of the Federal Space Program 2016–2025 (International Space Station, Nauka Multipurpose Laboratory Module; crystallization by the counter-diffusion method and collection of X-ray diffraction data) and in the frame of internal RD work, funded by the National Research Centre “Kurchatov Institute” Activity Program for 2018–2022 (analysis of the known MIF structures available in the PDB, as well as of the crystallization conditions for well-diffracting proteins).


  1. 1.
    T. Calandra and T. Roger, Nat. Rev. Immunol. 3, 791 (2003).CrossRefGoogle Scholar
  2. 2.
    E. Lolis and R. Bucala, Expert Opin. Ther. Targets 7, 153 (2003).CrossRefGoogle Scholar
  3. 3.
    Y. Al-Abeb and S. Van Patten, Future Med. Chem. 3, 63 (2011).Google Scholar
  4. 4.
    K. K. Brown, F. H. Blaikie, R. A. Smith, et al., J. Biol. Chem. 284, 32425 (2009).CrossRefGoogle Scholar
  5. 5.
    V. A. Kostevich, A. V. Sokolov, N. A. Grudinina, et al., Biometals 28, 817 (2015).CrossRefGoogle Scholar
  6. 6.
    H. Tanaka, K. Inaka, and Sh. Sughiyama, J. Synchrotron Radiat. 11, 45 (2004).CrossRefGoogle Scholar
  7. 7.
    S. Takahashi, T. Tsurumura, K. Aritake, et al., Acta Crystallogr. F 66, 846 (2010).CrossRefGoogle Scholar
  8. 8.
    K. M. Boiko, V. I. Timofeev, V. R. Samygina, et al., Crystallogr. Rep. 61 (5), 718 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    Z. Otwinowski and W. Minor, Methods Enzymol. A 276, 307 (1997).CrossRefGoogle Scholar
  10. 10.
    A. A. Vagin and A. Teplyakov, J. Appl. Crystallogr. 30, 1022 (1997).CrossRefGoogle Scholar
  11. 11.
    A. V. Sokolov, L. A. Dadinova, M. V. Petukhov, et al., Biochemistry (Moscow) 83 (6), 701 (2018).CrossRefGoogle Scholar
  12. 12.
    G. V. Crichlow, J. B. Lubetsky, L. Leng, et al., Biochemistry 48, 132 (2009).CrossRefGoogle Scholar
  13. 13.
    V. R. Samygina, Russ. Chem. Rev. 85, 464 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    D. R. Banatao, Proc. Natl. Acad. Sci. USA 103, 16230 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • K. M. Dubova
    • 1
    • 2
  • A. V. Sokolov
    • 3
  • N. P. Gorbunov
    • 3
  • V. R. Samygina
    • 1
    • 2
    Email author
  1. 1.Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of SciencesMoscowRussia
  2. 2.National Research Centre “Kurchatov Institute,”MoscowRussia
  3. 3.Institute for Experimental MedicineSt. PetersburgRussia

Personalised recommendations