Advertisement

Crystallography Reports

, Volume 63, Issue 4, pp 521–530 | Cite as

Double-Crystal Rocking Curve Simulation Using 2D Spectral Angular Diagrams of X-Ray Radiation

  • I. I. AtkninEmail author
  • N. V. Marchenkov
  • F. N. Chukhovskii
  • A. E. Blagov
  • M. V. Kovalchuk
Diffraction and Scattering of Ionizing Radiations

Abstract

A new approach to numerical simulation of double-crystal rocking curves is proposed. This approach is based on the use of experimental spectral angular diagrams of X-ray intensity distribution. Special calculation algorithms, which take into account the instrumental function of X-ray diffractometer and possible effects of dispersion and Bragg reflection asymmetry, have been developed and applied. A specific feature of the proposed approach is the possibility of visualizing the 2D spectral angular diagram of X-ray beam after its interaction with each element of the scheme. The approach makes it possible to perform calculations for a wide range of radiation sources (from an X-ray tube with any anode to a synchrotron radiation source) and X-ray optical elements (slits and monochromators). A comparison of simulation results and experimental data for a Si(110) crystal sample has confirmed adequacy of the proposed approach and its applicability for simulating diffraction patterns recorded in real experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. G. Pinsker, Dynamical Scattering of X-Rays in Crystal (Springer, New York, 1978).CrossRefGoogle Scholar
  2. 2.
    A. Authier, Dynamical Theory of X-ray Diffraction (Oxford Univ. Press, 2003).CrossRefzbMATHGoogle Scholar
  3. 3.
    D. K. Bowen and B. K. Tanner, X-Ray Metrology in Semiconductor Manufacturing (Taylor and Francis, London, 2005).Google Scholar
  4. 4.
    M. A. Chuev, V. V. Pashaev, I. A. Kvardakov, et al., Crystallogr. Rep. 53 (5), 734 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    N. V. Marchenkov, F. N. Chukhovskii, and A. E. Blagov, Crystallogr. Rep. 60 (2), 172 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    M. Sanchez del Rio, N. Canestrari, F. Jiang, et al., J. Synchrotron Radiat. 18, 708 (2011).CrossRefGoogle Scholar
  7. 7.
    F. Gozzo, L. D. Caro, C. Giannini, et al., J. Appl. Crystallogr. 39, 347 (2006).CrossRefGoogle Scholar
  8. 8.
    S. S. Hsu and L. Runshen, J. Appl. Crystallogr. 21, 213 (1988).CrossRefGoogle Scholar
  9. 9.
    C. Ferrero, D.-M. Riekel. C. Smilgies, et al., Appl. Opt. 47 (22), E116 (2008).CrossRefGoogle Scholar
  10. 10.
    A. Mikhalychev, A. Benediktovitch, T. Ulyanenkovac, et al., J. Appl. Crystallogr. 48, 1 (2015).CrossRefGoogle Scholar
  11. 11.
    M. A. Blokhin and I. G. Shveitser, X-ray Spectral Handbook (Nauka, Moscow, 1982) [in Russian].Google Scholar
  12. 12.
    I. M. Ternov, Usp. Fiz. Nauk 165 (4), 429 (1995).CrossRefGoogle Scholar
  13. 13.
    J. W. M. DuMond, Phys. Rev. 52, 872 (1937).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • I. I. Atknin
    • 1
    • 2
    Email author
  • N. V. Marchenkov
    • 1
    • 2
  • F. N. Chukhovskii
    • 1
  • A. E. Blagov
    • 1
    • 2
  • M. V. Kovalchuk
    • 1
    • 2
  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of SciencesMoscowRussia
  2. 2.National Research Centre “Kurchatov Institute,”MoscowRussia

Personalised recommendations