Advertisement

Crystallography Reports

, Volume 63, Issue 3, pp 480–484 | Cite as

Structure of Cu/Ni Nanowires Obtained by Matrix Synthesis

  • O. M. Zhigalina
  • I. M. Doludenko
  • D. N. Khmelenin
  • D. L. Zagorskiy
  • S. A. Bedin
  • I. M. Ivanov
Nanomaterials and Ceramics

Abstract

The structure of layered Cu/Ni nanowires obtained by template synthesis in 100-nm channels of track membranes has been investigated by transmission and scanning electron microscopy. The phase composition and main structural features of individual nanowires are determined. It is shown that nanowires consist of alternating Ni (Fm3m) and Cu (Fm3m) layers with grains up to 100 nm in size. It is found that nanowires contain also copper oxide crystallites up to 20 nm in size. The elemental composition of individual layers and their mutual arrangement are determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Anishchik, Nanomaterials and Nanotechnology, Ed. by V. B. Borisenko and N. K. Tolochko (Izd-vo BGU, Minsk, 2008) [in Russian].Google Scholar
  2. 2.
    C. R. Martin, Science 266, 1961 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    A. D. Davydov and V. M. Volgin, Elektrokhimiya 52 (9), 905 (2016).Google Scholar
  4. 4.
    Magnetic Nano-and Microwires: Design, Synthesis, Properties and Applications, Ed. by M. Va’zquez (Elsevier, Amsterdam, 2005), p. 395.Google Scholar
  5. 5.
    T. Ohgai, Electrodeposited Nanowires and Their Applications, Ed. by N. Lupu (Elsevier, InTech, 2010), p. 61.Google Scholar
  6. 6.
    C. Zet and C. Fosalau, Digest J. Nanomater. Biostruct. 7 (1), 299 (2012).Google Scholar
  7. 7.
    P. A. Grünberg, Rev. Mod. Phys. 80, 1531 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    W. Blum, Trans. Electrochem. Soc. 40, 307 (1921).Google Scholar
  9. 9.
    C. A. Ross, Annu. Rev. Mater. Sci. 24, 159 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    S. Esmaili and M. E. Bahrololoom, Elektron. Obrab. Mater. 48 (1), 42 (2012).Google Scholar
  11. 11.
    W. Schwarzacher and D. S. Lashmore, IEEE Trans. Magn. 32 (4), 3133 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    M. Chen, C.-L. Chien, and P. C. Searson, Chem. Mater. 18, 1595 (2006).CrossRefGoogle Scholar
  13. 13.
    I. M. Doludenko, G. G. Bondarenko, D. L. Zagorskii, and S. A. Bedin, Proc. XXVII Int. Conf. “Radiation Physics of Solid State,” Sevastopol’, July 10–15, 2017, p. 64.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • O. M. Zhigalina
    • 1
    • 2
  • I. M. Doludenko
    • 1
    • 3
  • D. N. Khmelenin
    • 1
  • D. L. Zagorskiy
    • 1
    • 4
  • S. A. Bedin
    • 1
    • 5
  • I. M. Ivanov
    • 2
  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia
  3. 3.National Research University Higher School of EconomicsMoscowRussia
  4. 4.Gubkin Russian State University of Oil and GasMoscowRussia
  5. 5.Moscow State Pedagogical UniversityMoscowRussia

Personalised recommendations