Advertisement

Crystallography Reports

, Volume 63, Issue 2, pp 207–211 | Cite as

Structural Conditionality of the Ionic Conductivity of MTiORO4 (M = K, Rb; R = P, As) Single Crystals

  • N. I. Sorokin
  • N. E. Novikova
  • Yu. V. Shaldin
  • M. Tseitlin
Physical Properties of Crystals
  • 23 Downloads

Abstract

The ionic conductivity σ||c along the crystallographic axis c and the structural imperfection of the lattices of KTiOPO4, RbTiOPO4, and RbTiOAsO4 single crystals with low defect concentration, grown by the high temperature solution growth technique, have been investigated by impedance spectroscopy and X-ray diffraction analysis. Isomorphic substitutions of Rb+ ions for conduction K+ cations in MTiOPO4 crystals decreases the σ||c value, whereas the substitution of As5+ ions for framework P5+ cations in RbTiORO4 crystals increases the σ||c value. The σ||c values at 573 K are found to be 1.0 × 10–5, 5.7 × 10–6, 2.0 × 10–6, and 3.3 × 10–5 S/cm for the KTiOPO4, RbTiOPO4 {100}, RbTiOPO4 {201}, and RbTiOAsO4 crystals, respectively (the growth zone of the crystalline boule from which the samples were cut is indicated in braces).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Voronkova and V. K. Yanovskii, Izv. Akad. Nauk SSSR, Neorg. Mater. 24 (12), 2062 (1988).Google Scholar
  2. 2.
    E. L. Belokoneva, Usp. Khim. 63 (7), 559 (1994).CrossRefGoogle Scholar
  3. 3.
    N. I. Sorokina and V. I. Voronkova, Crystallogr. Rep. 52 (1), 80 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    V. A. Kalesinkas, N. I. Pavlova, I. S. Rez, and I. P. Grigas, Lit. Fiz. Sb. 22, 87 (1982).Google Scholar
  5. 5.
    V. K. Yanovskii and V. I. Voronkova, Fiz. Tverd. Tela 27 (7), 2183 (1985).Google Scholar
  6. 6.
    I. M. Sil’vestrova, V. A. Maslov, and Yu. V. Pisarevskii, Kristallografiya 37 (5), 1227 (1992).Google Scholar
  7. 7.
    A. Pimenov, C. H. Ruscher, and V. A. Maslov, Solid State Commun. 97 (11), 913 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    J. D. Bierlein and C. B. Arweiler, Appl. Phys. Lett. 49 (15), 917 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    P. Urenski, N. Gorbatov, and G. Rosenman, J. Appl. Phys. 89 (3), 1850 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    J. H. Park, C. S. Kim, B. C. Choi, et al., Appl. Phys. A 78, 745 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    K. Noda, W. Sakamoto, T. Yogo, and S. Hirano, J. Mater. Sci. Lett. 19, 69 (2000).CrossRefGoogle Scholar
  12. 12.
    V. G. Gurtovoi, A. U. Sheleg, S. A. Guretskii, and N. A. Kalanda, Crystallogr. Rep. 53 (4), 683 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    S. Sigaryov, J. Phys. D: Appl. Phys. 26, 1326 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    B. C. Choi, J. B. Kim, B. M. Jin, et al., J. Korean Phys. Soc. 25 (4), 327 (1992).Google Scholar
  15. 15.
    V. A. Rusov, V. A. Serebryakov, A. B. Kaplun, and A. V. Gorchakov, Opt. Zh. 76 (6), 6 (2009).Google Scholar
  16. 16.
    http://www.ariel.ac.il.Google Scholar
  17. 17.
    N. Angert, L. Kaplun, M. Tseitlin, et al., J. Cryst. Growth 137, 116 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    M. Tseitlin, E. Mojaev, and M. Roth, J. Cryst. Growth 310, 1929 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    Yu. V. Shaldin, S. Matyjasik, M. Tseitlin, et al., Phys. Status Solidi B 246 (2), 452 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, and B. P. Sobolev, Fiz. Tverd. Tela 25, 1748 (1983).Google Scholar
  21. 21.
    Yu. V. Shaldin, R. Popravskii, S. Matyjasik, et al., Fiz. Tverd. Tela 37 (4), 1160 (1995).Google Scholar
  22. 22.
    Yu. V. Shaldin, S. Matyjasik, M. Rabadanov, et al., Phys. Solid State 48 (5), 912 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    N. Angert, M. Tseitlin, E. Yashin, and M. Roth, Appl. Phys. Lett. 67 (13), 1941 (1995).ADSCrossRefGoogle Scholar
  24. 24.
    I. Tordjman, R. Masse, and C. Guitel, Z. Krist. 139 (2), 103 (1974).CrossRefGoogle Scholar
  25. 25.
    S. Norberg and N. Ishizawa, Acta Crystallogr. C 61, i99 (2005).CrossRefGoogle Scholar
  26. 26.
    N. E. Novikova, I. A. Verin, N. I. Sorokina, et al., Crystallogr. Rep. 53 (6), 942 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    N. E. Novikova, Candidate’s Dissertation in Physics and Mathematics (Institute of Crystallography, Russian Academy of Sciences, Moscow, 2012).Google Scholar
  28. 28.
    E. L. Belokoneva and B. V. Mill’, Zh. Neorg. Khim. 39 (3), 355 (1994).Google Scholar
  29. 29.
    M. Yashima and T. Komatsu, Chem. Commun., 1070 (2009).Google Scholar
  30. 30.
    P. Delarue, C. Lecomte, M. Jannin, et al., J. Phys.: Condens. Matter 11, 4123 (1999).ADSGoogle Scholar
  31. 31.
    R. D. Shannon, Acta Crystallogr. A 32 (5), 751 (1976).ADSCrossRefGoogle Scholar
  32. 32.
    A. K. Ivanov-Shits and I. V. Murin, Solid-State Ionics, Vol. 1 (Izd-vo SPbGU, St. Petersburg, 2000) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. I. Sorokin
    • 1
  • N. E. Novikova
    • 1
  • Yu. V. Shaldin
    • 1
  • M. Tseitlin
    • 2
  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of SciencesMoscowRussia
  2. 2.Crystal Growth LaboratoryAriel University of SamariaArielIsrael

Personalised recommendations