Advertisement

Crystallography Reports

, Volume 63, Issue 2, pp 191–195 | Cite as

Mutation L232H Promotes Chromophore Maturation of EGFP-Based Fluorescent Fusion Proteins

  • A. A. Simanovskaya
  • T. V. Ivashina
  • Y. S. Zeifman
  • T. V. Fateeva
  • M. V. Krukova
  • A. N. Popov
  • G. S. Kachalova
  • T. V. Rakitina
Structure of Macromolecular Compounds
  • 20 Downloads

Abstract

The L232H mutant of the enhanced green fluorescent protein (EGFP) was expressed and crystallized. An X-ray diffraction data set was collected from the crystals to 1.53 Å resolution. An analysis of the three-dimensional structure revealed a stacking interaction between the amino-acid residues Н78 and Н232, which contributes to the fastening of the C-terminal region of the protein in the vicinity of the chromophore and influences chromophore maturation of hybrid fluorescent proteins produced by fusion of the target proteins with the C-terminus of EGFP. This hypothesis was experimentally confirmed by investigating chromophore maturation of the hybrid proteins fused to the N- and C-termini of EGFP and EGFP-L232H.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. N. Day and M. W. Davidson, Chem. Soc. Rev. 38, 4 (2009).CrossRefGoogle Scholar
  2. 2.
    G. Zhang, V. Gurtu, and S. R. Kain, Biochem. Biophys. Res. Commun. 227, 707 (1996).CrossRefGoogle Scholar
  3. 3.
    D. C. Prasher, V. K. Eckenrode, W. W. Ward, et al., Gene 111, 229 (1992).CrossRefGoogle Scholar
  4. 4.
    B. P. Cormack, R. H. Valdivia, and S. Falkow, Gene 173, 33 (1996).CrossRefGoogle Scholar
  5. 5.
    M. R. Green and J. Sambrook, Molecular Cloning: A Laboratory Manual (Fourth Edition) (Cold Spring Harbor Laboratory Press, 2012).Google Scholar
  6. 6.
    V. Timofeev, E. Slutskaya, M. Gorbacheva, et al., Acta Crystallogr. F 71, 951 (2015).CrossRefGoogle Scholar
  7. 7.
    A. Yu. Nikolaeva, V. I. Timofeev, K. M. Boiko, et al., Crystallogr. Rep. 60, 880 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    D. A. Altukhov, Yu. K. Agapova, A. V. Vlaskina, et al., Vestn. Mosk. Univ. 57 (4), 226 (2016).Google Scholar
  9. 9.
    D. A. Altukhov, A. A. Talyzina, Y. K. Agapova, et al., J. Biomol. Struct. Dyn. (2016); doi 10.1080/07391102.2016.1264893Google Scholar
  10. 10.
    U. K. Laemmli, Nature 227, 680 (1970).ADSCrossRefGoogle Scholar
  11. 11.
    L. Syrovy and Z. J. Hodny, Chromatography 569, 175 (1991).CrossRefGoogle Scholar
  12. 12.
    M. Ormö, A. B. Cubitt, K. Kallio, et al., Science 273, 1392 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. A. Simanovskaya
    • 1
  • T. V. Ivashina
    • 2
  • Y. S. Zeifman
    • 1
  • T. V. Fateeva
    • 1
  • M. V. Krukova
    • 1
  • A. N. Popov
    • 3
  • G. S. Kachalova
    • 1
    • 4
  • T. V. Rakitina
    • 1
    • 5
  1. 1.National Research Centre “Kurchatov Institute,”MoscowRussia
  2. 2.Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchino, Moscow RegionRussia
  3. 3.European Synchrotron Radiation FacilityGrenobleFrance
  4. 4.Federal Research Centre “Fundamentals of Biotechnology,”Russian Academy of SciencesMoscowRussia
  5. 5.Shemyakin–Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations