Crystallography Reports

, Volume 63, Issue 2, pp 245–249 | Cite as

Kinetics of State Switching in Quasi-One-Dimensional Nanosystems. Statistical Model of the Influence of Defects

  • B. V. Petukhov
Nanomaterials and Ceramics


The role of native and radiation-induced defects in the state switching kinetics for one-dimensional systems (nanowires, molecular single-chain magnets, biological macromolecules, and many others) has been studied. An analytical approach to the description of the influence of randomly located defects on the dynamics of new-phase domains is developed using an analogy with stochastic processes in queueing theory. This method makes it possible to calculate threshold phenomena and the dependence of switching fields on material parameters.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    One-Dimensional Nanostructures, Ed. by Z. M. Wang (Springer, New York, 2008).Google Scholar
  2. 2.
    Molecular Magnets. Physics and Applications, Ed. by J. Bartolome (Springer, Berlin, 2014).Google Scholar
  3. 3.
    F. Colaiori, Adv. Phys. 57, 287 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    V. V. Volkov and V. A. Bokov, Phys. Solid State 50, 199 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    A. A. Ivanov and V. A. Orlov, Phys. Solid State 57, 2204 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    B. Alessandro, C. Beatrice, G. Bertotti, and A. Montorsi, J. Appl. Phys. 68, 2901 (1990).ADSCrossRefGoogle Scholar
  7. 7.
    B. V. Petukhov, Sov. Phys. Solid State 13, 1204 (1971).Google Scholar
  8. 8.
    B. V. Petukhov, JETP 110, 41 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    W. Feller, An Introduction into the Probability Theory and Its Applications (Wiley, New York, 1957).zbMATHGoogle Scholar
  10. 10.
    L. Takács, Combinatorial Methods in the Theory of Stochastic Processes (Wiley, New York, 1967).zbMATHGoogle Scholar
  11. 11.
    B. V. Gnedenko and I. N. Kovalenko, Introduction to Queueing Theory (Gl. Red. Fiz.-Mat. Lit, Moscow, 1966) [in Russian].zbMATHGoogle Scholar
  12. 12.
    NIST Handbook of Mathematical Functions, Ed. by F. W. J. Olver (Cambridge Univ. Press, 2010).Google Scholar
  13. 13.
    B. V. Petukhov, Sov. Phys. Solid State 24, 248 (1982).Google Scholar
  14. 14.
    B. V. Petukhov, Phys. Solid State 58, 695 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    S. Lemerle, J. Ferré, C. Chappert, et al., Phys. Rev. Lett. 80, 849 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    K.-J. Kim, J.-C. Lee, S.-M. Ahn, et al., Nature 458, 740 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    B. van de Wiele, L. Laurson, and G. Durin, Phys. Rev. B 86, 14415 (2012).CrossRefGoogle Scholar
  18. 18.
    B. C. Satishkumar, A. Govindaraj, P. V. Vanitha, et al., Chem. Phys. Lett. 362, 301 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    A. Jiménez, R. P. del Real, and M. Vázquez, Eur. Phys. J. B 86, 113 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    W. Wernsdorfer, K. Hasselbach, A. Benoit, et al., Phys. Rev. B 55, 11552 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    H. Terrones, F. López-Urías, E. Muñoz-Sandoval, et al., Solid State Sci. 8, 303 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    A. Chizhik, R. Varga, A. Zhukov, et al., J. Appl. Phys. 103, 07E707 (2008).Google Scholar
  23. 23.
    S. Mukhopadhyay, A. Singh, and A. Ghosh, Phys. Rev. B 82, 172404 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of SciencesMoscowRussia

Personalised recommendations