Concentration Dependences of the Lattice Parameter and Density of Ca1 – xSr x F2 (0 ≤ x ≤ 1) Solid Solution Crystals
Abstract
A concentration series of fluorite crystals Ca1–xSr x F2 (0 ≤ x ≤ 1) has been grown by directional crystallization according to the Bridgman technique. Experimental (weakly quadratic) concentration dependences of the lattice parameter a(x) and density ρ(x) are obtained for the Ca1 – xSr x F2 (0 ≤ x ≤ 1) solid solution. A calibration density curve ρ(x), which is suitable for non-destructive testing of the composition of optical elements made of Ca1 – xSr x F2 crystals with an error of Δх = ± 0.001, was constructed.
Preview
Unable to display preview. Download preview PDF.
References
- 1.J. H. Burnett, Z. H. Livene, and E. L. Shirley, U.S. Patent No. 71636449 (2007).Google Scholar
- 2.T. T. Basiev, S. V. Vasil’ev, M. E. Doroshenko, et al., Kvantovaya Elektron. 37 (10), 934 (2007).CrossRefGoogle Scholar
- 3.R. Yu. Shendrik, E. A. Radzhabov, and A. I. Nepomnyashchikh, Pis’ma Zh. Eksp. Teor. Fiz. 39 (13), 9 (2013).Google Scholar
- 4.V. A. Bezhanov, D. N. Karimov, R. V. Kirkin, et al., Poverkhnost, No. 5, 44 (2012).Google Scholar
- 5.J. T. Mouhovski, Prog. Cryst. Growth Charact. Mater. 53, 79 (2007).CrossRefGoogle Scholar
- 6.S. M. Gechev, J. T. Mouhovski, and P. Tzvetkov, J. Optoelectron. Adv. Mater. 1 (3), 326 (2009).Google Scholar
- 7.V. S. Urusov, Yu. P. Grigorash, M. V. Kazakevich, et al., Geokhimiya, No. 11, 1700 (1980).Google Scholar
- 8.D. Klimm, M. Rabe, R. Bertram, et al., J. Cryst. Growth 310 (1), 152 (2008).ADSCrossRefGoogle Scholar
- 9.B. P. Sobolev, The Rare Earth Trifluorides, Part 2: Introduction to Materials Science of Multicomponent Metal Fluoride Crystals (Institute of Crystallography, Moscow, 2001; Institut d’Estudis Catalans, Barcelona, 2001). www.books.google.ru/books/rare earth trifluoridesGoogle Scholar
- 10.D. N. Karimov, O. N. Komar’kova, N. I. Sorokin, et al., Crystallogr. Rep. 55 (3), 518 (2010).ADSCrossRefGoogle Scholar
- 11.E. G. Chernyavskaya, Opt.-Mekh. Prom-st, No. 5, 28 (1960).Google Scholar
- 12.E. G. Chernyavskaya and G. V. Anan’eva, Fiz. Tverd. Tela 8 (1), 216 (1966).Google Scholar
- 13.B. Kostova, J. Mouchovski, O. Petrov, et al., J. Mater. Chem. Phys. 113, 260 (2009).CrossRefGoogle Scholar
- 14.R. E. Youngman and C. M. Smith, Phys. Rev. B 78 (1), 014112 (2008).ADSCrossRefGoogle Scholar
- 15.P. A. Popov, N. V. Moiseev, D. N. Karimov, et al., Crystallogr. Rep. 60 (1), 116 (2015).ADSCrossRefGoogle Scholar
- 16.E. A. Krivandina, Z. I. Zhmurova, T. M. Glushkova, et al., Crystallogr. Rep. 48 (5), 878 (2003).ADSCrossRefGoogle Scholar
- 17.E. A. Krivandina, Z. I. Zhmurova, G. V. Berezhkova, et al., Kristallografiya 40 (4), 741 (1995).Google Scholar
- 18.E. A. Krivandina, Z. I. Zhmurova, B. P. Sobolev, et al., Crystallogr. Rep. 51 (5), 895 (2006).ADSCrossRefGoogle Scholar
- 19.N. A. Ivanovskaya, D. N. Karimov, E. A. Sul’yanova, et al., Proc. I Ross. Crystallogr. Congress, Moscow, November 21-26, 2016, p.424.Google Scholar
- 20.E. A. Sul’yanova, D. N. Karimov, S. N. Sul’yanov, and B. P. Sobolev, Kristallografiya 58 (2), 19 (2014).Google Scholar
- 21.R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).ADSCrossRefGoogle Scholar
- 22.V. Dimov, B. Kostova, and L. Konstantinov, J. Optoelectron. Adv. Mater. 1 (3), 292 (2009).Google Scholar
Copyright information
© Pleiades Publishing, Inc. 2018