Advertisement

Crystallography Reports

, Volume 63, Issue 2, pp 186–190 | Cite as

Synthesis and Structures of Triphenylbismuth Bis[3-(2-Furyl)Acrylate] Ph3Bi[O2CCH=CH(C4H3O)]2 and Triphenylbismuth Di-meta-nitrocinnamate Ph3Bi(O2CCH=CH–С6H4NO2-m)2

  • A. A. Gusakovskaya
  • O. S. Kalistratova
  • P. V. Andreev
  • A. V. Gushchin
  • N. V. Somov
  • E. V. Chuprunov
Structure of Organic Compounds

Abstract

Triphenylbismuth bis[3-(2-furyl)acrylate] Ph3Bi[O2CCH=CH(C4H3O)]2 and triphenylbismuth di-meta-nitrocinnamate Ph3Bi(O2CCH=CH–C6H4NO2-m)2 were synthesized and studied by X-ray diffraction. The crystal structures (sp. gr. P1, Z = 2; sp. gr. P21, Z = 2, respectively) contain one and two tetrahydrofuran solvent molecules, respectively, per bismuth complex. The bismuth atom has a trigonal-bipyramidal coordination geometry. Additional weak Bi···O interactions (2.748–2.835 Å) cause large angle distortions in the equatorial plane of the trigonal bipyramid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Leebrick, US Patent 3287210, Chem. Abstr., 1967, vol. 66, no.19.Google Scholar
  2. 2.
    M. M. Koton, Metalorganic Compounds and Radicals (Nauka, Moscow, 1985) [in Russian], p.13.Google Scholar
  3. 3.
    Organometallic Polymers, Ed. by C. Carraher, J. Sheats and C. Pittman (Academic, New York, 1978).Google Scholar
  4. 4.
    V. A. Dodonov, A. V. Gushchin, Yu. L. Kuznetsova, and V. A. Morugova, Vestn. Nizhegorod. Univ. im. N. I. Lobachevskogo 4, 86 (2004).Google Scholar
  5. 5.
    B. L. Rupert, N. J. Cherepy, B. W. Sturm, et al., Europhys. Lett. 97 (2), 22002 (2012).CrossRefGoogle Scholar
  6. 6.
    Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIII, Ed. by L. A. Franks (SPIE, San Diego, 2001), Vol. 8142, p.394.Google Scholar
  7. 7.
    G. G. Briand and N. Burford, Chem. Rev. 99, 2601 (1999).CrossRefGoogle Scholar
  8. 8.
    J. R. Lambert and P. Midolo, Aliment. Pharmacol. Ther. 11, 27 (1997).CrossRefGoogle Scholar
  9. 9.
    J. Mishra, A. Saxena, and S. Singh, Curr. Med. Chem. 14, 1153 (2007).CrossRefGoogle Scholar
  10. 10.
    CrysAlis CCD and CrysAlis RED (Rigaku Oxford Diffraction, 2015).Google Scholar
  11. 11.
    G. M. Sheldrick, Acta Crystallogr. A 64, 112 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    L. J. Farrugia, J. Appl. Crystallogr. 45, 849 (2012).CrossRefGoogle Scholar
  13. 13.
    C. F. Macrae, P. R. Edgington, P. McCabe, et al., J. Appl. Crystallogr. 39, 453 (2006).CrossRefGoogle Scholar
  14. 14.
    O. S. Kalistratova, P. V. Andreev, A. V. Gushchin, et al., Crystallogr. Rep. 61 (3), 391 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    S. S. Batsanov, Inorg. Mater. 37 (9), 871 (2001).CrossRefGoogle Scholar
  16. 16.
    A. V. Gushchin, L. K. Prytkova, D. V. Shashkin, et al., Vestn. Nizhegorod. Univ. im. N. I. Lobachevskogo, Ser. Khim., No. 3, 95 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. A. Gusakovskaya
    • 1
  • O. S. Kalistratova
    • 1
  • P. V. Andreev
    • 1
  • A. V. Gushchin
    • 1
  • N. V. Somov
    • 1
  • E. V. Chuprunov
    • 1
  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations