Skip to main content
Log in

Simulation of Simple and Complex Gadolinium Molybdates by the Interatomic Potential Method

  • Crystal Chemistry
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Crystals of ferroelectric‒ferroelastic gadolinium molybdate Gd2(MoO4)3, calcium molybdate CaMoO4, and double sodium‒gadolinium molybdates of stoichiometric (Na1/2Gd1/2MoO4) and cationdeficient (Na2/7Gd4/7MoO4) compositions, which are used to design solid-state lasers, phosphors, and white LEDs, have been simulated by the interatomic potential method. Their structural, mechanical, and thermodynamic properties are calculated using a unified system of interatomic potentials and effective ion charges, which demonstrated transferability and made it possible not only to describe the existing experimental data but also to predict some important physical and thermodynamic properties of molybdate crystals. The influence of the deviation from stoichiometry and partial ordering of cations on sites in nonstoichiometric crystals on the properties and local structure of sodium‒gadolinium molybdates is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. V. Zharikov, C. Zaldo, and F. Diaz, MRS Bull. 34, 271 (2009).

    Article  Google Scholar 

  2. A. M. Kaczmarek and R. Van Deun, Chem. Soc. Rev. 42, 8835 (2013).

    Article  Google Scholar 

  3. A. A. Maier, M. V. Provotorov, and V. A. Balashov, Usp. Khim. 42, 1788 (1973).

    Article  Google Scholar 

  4. V. K. Trunov, V. A. Efremov, and Yu. A. Velikodnyi, Crystal Chemistry and Properties of Double Molybdates and Tungstates (Nauka, Leningrad, 1986) [in Russian].

    Google Scholar 

  5. R. K. Pandey, J. Phys. Soc. Jpn. 36, 177 (1974).

    Article  ADS  Google Scholar 

  6. L. H. Brixner, J. Phys. Soc. Jpn. 38, 1218 (1975).

    Article  ADS  Google Scholar 

  7. V. Morozov, A. Arakcheeva, B. Redkin, et al., Inorg. Chem. 51, 5313 (2012).

    Article  Google Scholar 

  8. J. D. Gale, Z. Krist. 220, 552 (2005).

    Google Scholar 

  9. B. G. Dick and A. W. Overhauser, Phys. Rev. 112, 90 (1958).

    Article  ADS  Google Scholar 

  10. V. L. Vinograd, D. Bosbach, B. Winkler, and J. D. Gale, Phys. Chem. Chem. Phys. 10, 3509 (2008).

    Article  Google Scholar 

  11. V. B. Aleksandrov, L. V. Gorbatyi, and V. V. Ilyukhin, Kristallografiya 13 (3), 512 (1968).

    Google Scholar 

  12. V. S. Urusov and N. N. Eremin, Atomistic Computer Simulation of the Structure and Properties of Inorganic Crystals and Minerals, Their Defects, and Solid Solutions (GEOS, Moscow, 2012) [in Russian].

    Google Scholar 

  13. G. M. Kuz’micheva, V. B. Rybakov, V. Panyutin, et al., Russ. J. Inorg. Chem. 55, 1448 (2010).

    Article  Google Scholar 

  14. A. Li, J. Li, Z. Chen, et al., Mater. Express 5, 527 (2015).

    Article  Google Scholar 

  15. C. Zhao, X. Yin, F. Huang, and Y. Hang, J. Solid State Chem. 184, 3190 (2011).

    Article  ADS  Google Scholar 

  16. W. Zhao, Z. Lin, L. Zhang, and G. Wang, J. Alloys Compd. 509, 2815 (2011).

    Article  Google Scholar 

  17. G. M. Kuz’micheva, I. A. Kaurova, V. B. Rybakov, et al., Cryst. Eng. Commun. 18, 2921 (2016).

    Article  Google Scholar 

  18. W. Jeitschko, Acta Crystallogr. B 28, 60 (1972).

    Article  Google Scholar 

  19. M. Busch, J. C. Toledano, and J. Torres, Opt. Commun. 10, 273 (1974).

    Article  ADS  Google Scholar 

  20. V. B. Dudnikova and E. V. Zharikov, Phys. Solid State 59, 860 (2017).

    Article  ADS  Google Scholar 

  21. J. Sapriel and R. Vacher, J. Appl. Phys. 48, 1191 (1977).

    Article  ADS  Google Scholar 

  22. S. Mielcarek, A. Trzaskowska, B. Mroz, and T. Andrews, J. Phys.: Condens. Matter 17, 587 (2005).

    ADS  Google Scholar 

  23. I. A. Andreev, Izv. Ross. Gos. Ped. Univ. im. A. I. Gertsena 6, 27 (2006).

    Google Scholar 

  24. D. J. Epstein, W. V. Herrick, and R. F. Turek, Solid State Commun. 8, 1491 (1970).

    Article  ADS  Google Scholar 

  25. A. Fouskova, J. Phys. Soc. Jpn. 27, 1699 (1969).

    Article  ADS  Google Scholar 

  26. K. M. Cheung and F. G. Ullman, Phys. Rev. B 10, 4760 (1974).

    Article  ADS  Google Scholar 

  27. T. Nakamura and E. Sawaguchi, J. Phys. Soc. Jpn. 50, 2323 (1981).

    Article  ADS  Google Scholar 

  28. The International Database PCPDFWIN, ver. 2.02 (JCPDS, 1999).

  29. M. Schieber and L. Holmes, J. Appl. Phys. 35, 1004 (1964).

    Article  ADS  Google Scholar 

  30. V. B. Dudnikova and E. V. Zharikov, Phys. Solid State 59, 866 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Dudnikova.

Additional information

Original Russian Text © V.B. Dudnikova, E.V. Zharikov, 2018, published in Kristallografiya, 2018, Vol. 63, No. 2, pp. 184–189.

First Russian Crystallographic Congress

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudnikova, V.B., Zharikov, E.V. Simulation of Simple and Complex Gadolinium Molybdates by the Interatomic Potential Method. Crystallogr. Rep. 63, 166–171 (2018). https://doi.org/10.1134/S1063774518020050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774518020050

Navigation