Crystallography Reports

, Volume 62, Issue 5, pp 692–702 | Cite as

Study of the specific features of single-crystal boron microstructure

  • A. E. Blagov
  • A. L. Vasil’ev
  • V. P. Dmitriev
  • A. G. Ivanova
  • A. G. Kulikov
  • N. V. Marchenkov
  • P. A. Popov
  • M. Yu. Presnyakov
  • P. A. Prosekov
  • Yu. V. Pisarevskii
  • A. V. Targonskii
  • T. S. Chernaya
  • D. Yu. Chernyshov
Diffraction and Scattering of Ionizing Radiations
  • 31 Downloads

Abstract

A complex study of the structure of β-boron single crystal grown by the floating-zone method, with sizes significantly exceeding the analogs known in the literature, has been performed. The study includes X-ray diffraction analysis and X-ray diffractometry (measurement of pole figures and rocking curves), performed on both laboratory and synchrotron sources; atomic-resolution scanning transmission electron microscopy with spherical aberration correction; and energy-dispersive microanalysis. X-ray diffraction analysis using synchrotron radiation has been used to refine the β-boron structure and find impurity Si atoms. The relative variations in the unit-cell parameters a and c for the crystal bulk are found to be δa/a ≈ 0.4 and δc/c ≈ 0.1%. X-ray diffractometry has revealed that the single-crystal growth axis coincides with the [\(2\bar 2013\)] crystallographic axis and makes an angle of 21.12° with the [0001] threefold axis. Electron microscopy data have confirmed that the sample under study is a β-boron crystal, which may contain 0.3–0.4 at % Si as an impurity. Planar defects (stacking faults and dislocations) are found. The results of additional measurements of the temperature dependence of the thermal conductivity of the crystal in the range of 50–300 K are indicative of its high structural quality.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Nechepurenko, Sb. Nauch. Tr. Yekaterinburg, No. 71, 40 (2000).Google Scholar
  2. 2.
    B. F. Decker and J. S. Kasper, Acta Crystallogr. 12 (7), 503 (1959).CrossRefGoogle Scholar
  3. 3.
    G. Parakhonskiy, N. Dubrovinskaia, L. Dubrovinsky, et al., J. Cryst. Growth 321 (1), 162 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    J. L. Hoard, D. B. Sullenger, C. H. L. Kennard, and R. E. Hughes, J. Solid State Chem. 1 (2), 268 (1970).ADSCrossRefGoogle Scholar
  5. 5.
    G. A. Slack, C. I. Hejna, M. F. Garbauskas, and J. S. Kasper, J. Solid State Chem. 76 (1), 52 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    B. Kolakowski, Acta Phys. Polonica 22, 439 (1962).Google Scholar
  7. 7.
    E. Yu. Zarechnaya, L. Dubrovinsky, N. Dubrovinskaia, et al., Phys. Rev. Lett. 102 (18), 185501 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    J. L. Hoard, R. E. Hughes, and D. E. Sands, J. Am. Chem. Soc. 80 (17), 4507 (1958).CrossRefGoogle Scholar
  9. 9.
    E. A. Ekimov and I. P. Zibrov, Sci. Technol. Adv. Mater. 12 (5), 55009 (2011).CrossRefGoogle Scholar
  10. 10.
    G. Parakhonskiy, V. Vtech, N. Dubrovinskaia, et al., Solid State Commun. 154, 34 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    E. Yu. Zarechnaya, L. Dubrovinsky, N. Dubrovinskaia, et al., Sci. Technol. Adv. Mater. 9 (4), 44209 (2008).CrossRefGoogle Scholar
  12. 12.
    G. Parakhonskiy, N. Dubrovinskaia, E. Bykova, et al., High Pressure Res. 33 (3), 673 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    A. R. Oganov, V. L. Solozhenko, C. Gatti, et al., J. Superhard Mater. 33 (6), 363 (2011).CrossRefGoogle Scholar
  14. 14.
    A. R. Oganov, J. Chen, and C. Gatti, Nature 457, 863 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    W. N. von Lipscomb, Boron Hydrides. The Physical Inorganic Chemistry Series (Springer, New York, 1963).Google Scholar
  16. 16.
    W. G. Pfann, J. Metals 4, 747 (1952).Google Scholar
  17. 17.
    Agilent Technologies, CrysAlisCCD, Version 1.171.33.52, release 29-05-2009 CrysAlis171 (Oxford Diffraction Ltd, Oxford, 2009).Google Scholar
  18. 18.
    A. R. Akbashev, V. V. Roddatis, A. L. Vasiliev, et al., Sci. Rep. 2, 672 (2012).CrossRefGoogle Scholar
  19. 19.
    D. K. Bowen and B. K. Tanner, High-Resolution X-Ray Diffractometry and Topography (Taylor and Francis, London, 1998).Google Scholar
  20. 20.
    K. Nagao and E. Kagami, Rigaku J. 27 (2), 6 (2011).Google Scholar
  21. 21.
    N. N. Sirota, P. A. Popov, and I. A. Ivanov, Cryst. Res. Technol. 27 (4), 535 (1992).CrossRefGoogle Scholar
  22. 22.
    V. Dyadkin, P. Pattison, V. Dmitriev, and D. Chernyshov, J. Synchrotron. Radiat. 23, 825 (2016).CrossRefGoogle Scholar
  23. 23.
    V. Petříček, M. Dušek, and L. Palatinus, Z. Krist. 229 (5), 345 (2014).Google Scholar
  24. 24.
    B. Vykova, G. Parakhonskiy, N. Dubrovinskaia, et al., J. Solid State Chem. 194, 188 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    P. J. Becker and P. Coppens, Acta Crystallogr. A 30 (2), 129 (1974).ADSCrossRefGoogle Scholar
  26. 26.
    B. M. Mikhailov and M. E. Kuimova, Russ. Chem. Rev. 35 (8), 569 (1966).ADSCrossRefGoogle Scholar
  27. 27.
    D. B. Williams and C. B. Carter, Transmission Electron Microscopy. A Textbook for Materials Science (Springer, New York, 2009).Google Scholar
  28. 28.
    W. van den Broek, A. Rosenauer, B. Goris, et al., Ultramicroscopy 116, 8 (2012).CrossRefGoogle Scholar
  29. 29.
    G. A. Slack, D. W. Oliver, and F. H. Horn, Phys. Rev. 4 (6), 1714 (1971).ADSCrossRefGoogle Scholar
  30. 30.
    A. V. Petrov, M. S. Germaidze, O. A. Golikova, et al., Fiz. Tverd. Tela 11 (4), 907 (1969).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. E. Blagov
    • 1
    • 2
  • A. L. Vasil’ev
    • 1
    • 2
  • V. P. Dmitriev
    • 3
  • A. G. Ivanova
    • 1
  • A. G. Kulikov
    • 1
    • 2
  • N. V. Marchenkov
    • 1
    • 2
  • P. A. Popov
    • 4
  • M. Yu. Presnyakov
    • 2
  • P. A. Prosekov
    • 1
    • 2
  • Yu. V. Pisarevskii
    • 1
    • 2
  • A. V. Targonskii
    • 1
    • 2
  • T. S. Chernaya
    • 1
  • D. Yu. Chernyshov
    • 3
  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of SciencesMoscowRussia
  2. 2.National Research Centre “Kurchatov Institute”MoscowRussia
  3. 3.Swiss–Norwegian Beamlines at the European Synchrotron Radiation FacilityGrenobleFrance
  4. 4.Bryansk State UniversityBryanskRussia

Personalised recommendations