Crystallography Reports

, Volume 62, Issue 4, pp 632–638 | Cite as

Modification of the Langmuir–Schaefer method for fabrication of ordered protein films

  • M. V. Kovalchuk
  • A. S. Boikova
  • Yu. A. Dyakova
  • M. A. Marchenkova
  • A. M. Opolchentsev
  • Yu. V. Pisarevsky
  • P. A. Prosekov
  • A. Yu. Seregin
Surface, Thin Films

Abstract

A modification of the Langmuir–Schaefer method for the fabrication of high-quality protein films on a solid substrate was proposed and applied to lysozyme. The procedure relies on the use of a pre-prepared protein solution, the parameters of which correspond to crystallization conditions. A lysozyme Langmuir monolayer was shown to be formed with the involvement of complexes, namely, dimers and octamers of protein molecules that are present in such protein solutions. These complexes apparently retain the structure after spreading a protein solution onto an aqueous subphase in a Langmuir trough. The thickness of the film after the transfer of the monolayer, which was formed by the proposed procedure, onto a solid substrate corresponds to the diameter of the octamer and this film is dense, continuous, and uniform, as was demonstrated by several methods: X-ray reflectivity, total external reflection X-ray standing wave, and atomic force microscopy. A layer of chloride ions that formed under the Langmuir monolayer was found at the air–protein film interface. This fact confirms an important role of the precipitating agent (chloride ions) in all steps of the formation of lysozyme films.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Marchenkova, Y. A. Dyakova, E. Yu. Tereschenko, et al., Langmuir 31, 12426 (2015).CrossRefGoogle Scholar
  2. 2.
    Yu. A. Dyakova and M. A. Marchenkova, Crystallogr. Rep. 61 (5), 744 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    M. V. Koval’chuk, V. V. Klechkovskaya, and L. A. Feigin, Priroda, No. 12, 45 (2003).Google Scholar
  4. 4.
    E. Pechkova, S. Fiordoro, F. Barbieri, and C. Nicolini, J. Nanomed. Nanotechnol. 5 (6), 1000247 (2014).CrossRefGoogle Scholar
  5. 5.
    K. Hamaguchi, J. Biochem. 42 (6), 705 (1955).CrossRefGoogle Scholar
  6. 6.
    K. Hamaguchi, J. Biochem. 43 (3), 355 (1956).CrossRefGoogle Scholar
  7. 7.
    G. Thakur, C. Wang, and R. M. Leblanc, Langmuir 24 (9), 4888 (2008).CrossRefGoogle Scholar
  8. 8.
    M. A. Marchenkova, V. V. Volkov, A. E. Blagov, et al., Crystallogr. Rep. 61 (1), 5 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    M. V. Kovalchuk, A. E. Blagov, Yu. A. Dyakova, et al., Cryst. Growth Des. 6 (4), 1792 (2016).CrossRefGoogle Scholar
  10. 10.
    Yu. A. Dyakova, K. B. Ilina, P. V. Konarev, et al., Crystallogr. Rep. 62 (3), 364 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    I. Langmuir and V. Schaefer, J. Am. Chem. Soc. 58, 284 (1936).CrossRefGoogle Scholar
  12. 12.
    M. V. Koval’chuk and V. G. Kon, Usp. Fiz. Nauk 149 (1), 69 (1986).CrossRefGoogle Scholar
  13. 13.
    A. Yu. Seregin, Yu. A. Dyakova, S. N. Yakunin, et al., Crystallogr. Rep. 58 (6), 934 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    L. Parratt, Phys. Rev. 95 (2), 359 (1954).ADSCrossRefGoogle Scholar
  15. 15.
    J. S. Pedersen and I. W. Hamley, J. Appl. Crystallogr. 27 (1), 36 (1994).CrossRefGoogle Scholar
  16. 16.
    M. V. Koval’chuk, P. A. Prosekov, M. A. Marchenkova, et al., Crystallogr. Rep. 59 (5), 679 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    http://kcsni.nrcki.ru/pages/main/12016/12076/12083/index.shtml.Google Scholar
  18. 18.
    F. Bonneté, M. Malfois, S. Finet, et al., Acta Crystallogr. D 53 (4), 438 (1997).CrossRefGoogle Scholar
  19. 19.
    F. Bonneté, S. Finet, and A. Tardieu, J. Cryst. Growth 196 (2–4), 403 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • M. V. Kovalchuk
    • 1
    • 2
    • 3
  • A. S. Boikova
    • 1
    • 2
  • Yu. A. Dyakova
    • 1
    • 2
  • M. A. Marchenkova
    • 1
    • 2
  • A. M. Opolchentsev
    • 1
  • Yu. V. Pisarevsky
    • 1
    • 2
  • P. A. Prosekov
    • 1
    • 2
  • A. Yu. Seregin
    • 1
    • 2
  1. 1.Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of SciencesMoscowRussia
  2. 2.National Research Centre “Kurchatov Institute,”MoscowRussia
  3. 3.Saint Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations