X-ray analysis of multilayer In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As HEMT heterostructures with InAs nanoinsert in quantum well


In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As HEMT heterostructures on InP substrates with elastically strained InAs insert in combined quantum well (QW) have been investigated using a combination of X-ray methods: double-crystal X-ray diffraction, X-ray reflectivity, and reciprocal space mapping. This approach has provided detailed complementary information about the layered and real crystal structures of the samples. The data obtained have made it possible to perform structural analysis of the multilayer systems and compare their characteristics with specified technological parameters, due to which the HEMT growth technology can be corrected and improved.

This is a preview of subscription content, log in to check access.


  1. 1.

    H. L. Stormer, R. Dingle, A. C. Gossard, et al., Solid State Commun. 29, 705 (1979).

    ADS  Article  Google Scholar 

  2. 2.

    D.-H. Kim and J. A. del Alamo, IEEE Electron. Device Lett. 31, 806 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    M. McElhinney, B. Vogele, M. C. Holland, et al., Appl. Phys. Lett. 68, 940 (1996).

    ADS  Article  Google Scholar 

  4. 4.

    R. D. Dupuis, P. D. Dapkus, R. D. Yingling, and L. A. Moudy, Appl. Phys. Lett. 31, 201 (1977).

    ADS  Article  Google Scholar 

  5. 5.

    M. Sexl, G. Bohm, D. Xu, et al., J. Cryst. Growth 175–176, 915 (1997).

    Article  Google Scholar 

  6. 6.

    K. Onda, A. Fujihara, A. Vakejima, et al., IEEE Electron Device Lett. 19, 300 (1998).

    ADS  Article  Google Scholar 

  7. 7.

    D. Xu, H. G. Heiss, S. A. Kraus, et al., IEEE Trans. Electron. Device 45, 21 (1998).

    ADS  Article  Google Scholar 

  8. 8.

    N. Maeda, H. Ito, T. Enoki, et al., J. Appl. Phys. 81 (3), 1552 (1997).

    ADS  Article  Google Scholar 

  9. 9.

    D. S. Ponomarev, I. S. Vasil’evskii, G. B. Galiev, et al., Nano Mikrosist. Tekh, No 12, 16 (2011).

    Google Scholar 

  10. 10.

    M. V. Koval’chuk, A. L. Vasil’ev, R. M. Imamov, et al., Kristallografiya 56 (2), 324 (2011).

    Google Scholar 

  11. 11.

    G. B. Galiev, I. S. Vasil’evskii, E. A. Klimov, et al., J. Mater. Res. 30 (20), 3020 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    K. Matsumura, D. Inoue, H. Nakano, et al., Proc. Int. Symp. GaAs and Related Compounds, Jersey, UK, 1990 (Inst. Phys. Conf. Ser. 11), p.465.

    Google Scholar 

  13. 13.

    T. Akazaki, K. Arai, T. Enoki, et al., IEEE Electron Device Lett. 13, 325 (1992).

    ADS  Article  Google Scholar 

  14. 14.

    G. B. Galiev, I. S. Vasilevskii, E. A. Klimov, et al., Semiconductors 49 (2), 234 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    G. B. Galiev, S. S. Pushkarev, E. A. Klimov, et al., Crystallogr. Rep. 59 (2), 258 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    B. A. Aronzon, M. V. Kovalchuk, E. M. Pashaev, et al., J. Phys.: Condens. Matter 20, 145207 (2008).

    ADS  Google Scholar 

  17. 17.

    A. E. Blagov, A. L. Vasil’ev, A. S. Golubeva, et al., Crystallogr. Rep. 59 (3), 315 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    A. V. Butashin, V. M. Kanevskii, A. E. Muslimov, et al., Crystallogr. Rep. 60 (4), 565 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    M. V. Koval’chuk, P. A. Prosekov, M. A. Marchenkova, et al., Crystallogr. Rep. 59 (5), 679 (2014).

    ADS  Article  Google Scholar 

  20. 20.

    R. N. Kyutt, Aktual. Vopr. Sovrem. Estestvozn, No 5, 43 (2007).

    Google Scholar 

  21. 21.

    V. Holy, U. Pietsch, and T. Baumbach, High-Resolution X-ray Scattering from Thin Films and Multilayers (Springer, 1999).

    Google Scholar 

  22. 22.

    D. K. Bowen and B. K. Tanner, High-Resolution X-ray Diffractometry and Topography (Taylor and Francis, London, 1998).

    Google Scholar 

  23. 23.

    M. A. Chuev, A. A. Lomov, and R. M. Imamov, Crystallogr. Rep. 51 (2), 178 (2006).

    ADS  Article  Google Scholar 

  24. 24.

    P. F. Fewster, Rep. Prog. Phys. 59, 1339 (1996).

    ADS  Article  Google Scholar 

  25. 25.

    S. I. Zheludeva, N. N. Novikova, M. V. Koval’chuk, et al., Crystallogr. Rep. 54 (6), 920 (2009).

    ADS  Article  Google Scholar 

  26. 26.

    V. A. Bushuev and O. D. Roshchupkina, Izv. Ross. Akad. Nauk, Ser. Fiz, No 1, 64 (2007).

    Google Scholar 

  27. 27.

    L. G. Parratt, Phys. Rev. 95 (2), 359 (1954).

    ADS  Article  Google Scholar 

  28. 28.

    T. Cheng, F. D. Ma, J. E. Zhou, et al., J. Miner. 64 (1), 167 (2012).

    Google Scholar 

  29. 29.

    M. V. Koval’chuk, A. E. Blagov, A. G. Kulikov, et al., Crystallogr. Rep. 59 (6), 862 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    V. M. Kaganer, R. Kohler, M. Schmidbaurer, and R. Opitz, Phys. Rev. B 55 (3), 1793 (1997).

    ADS  Article  Google Scholar 

  31. 31.

    G. B. Galiev, A. L. Vasil’ev, R. M. Imamov, et al., Kristallografiya 59 (6), 990 (2015)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to O. A. Kondratev.

Additional information

Original Russian Text © A.E. Blagov, G.B. Galiev, R.M. Imamov, E.A. Klimov, O.A. Kondratev, Yu.V. Pisarevskii, P.A. Prosekov, S.S. Pushkarev, A.Yu. Seregin, M.V. Koval’chuk, 2017, published in Kristallografiya, 2017, Vol. 62, No. 3, pp. 355–363.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blagov, A.E., Galiev, G.B., Imamov, R.M. et al. X-ray analysis of multilayer In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As HEMT heterostructures with InAs nanoinsert in quantum well. Crystallogr. Rep. 62, 355–363 (2017). https://doi.org/10.1134/S1063774517030026

Download citation