Crystallography Reports

, Volume 62, Issue 3, pp 355–363 | Cite as

X-ray analysis of multilayer In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As HEMT heterostructures with InAs nanoinsert in quantum well

  • A. E. Blagov
  • G. B. Galiev
  • R. M. Imamov
  • E. A. Klimov
  • O. A. Kondratev
  • Yu. V. Pisarevskii
  • P. A. Prosekov
  • S. S. Pushkarev
  • A. Yu. Seregin
  • M. V. Koval’chuk
Diffraction and Scattering of Ionizing Radiations
  • 39 Downloads

Abstract

In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As HEMT heterostructures on InP substrates with elastically strained InAs insert in combined quantum well (QW) have been investigated using a combination of X-ray methods: double-crystal X-ray diffraction, X-ray reflectivity, and reciprocal space mapping. This approach has provided detailed complementary information about the layered and real crystal structures of the samples. The data obtained have made it possible to perform structural analysis of the multilayer systems and compare their characteristics with specified technological parameters, due to which the HEMT growth technology can be corrected and improved.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. L. Stormer, R. Dingle, A. C. Gossard, et al., Solid State Commun. 29, 705 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    D.-H. Kim and J. A. del Alamo, IEEE Electron. Device Lett. 31, 806 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    M. McElhinney, B. Vogele, M. C. Holland, et al., Appl. Phys. Lett. 68, 940 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    R. D. Dupuis, P. D. Dapkus, R. D. Yingling, and L. A. Moudy, Appl. Phys. Lett. 31, 201 (1977).ADSCrossRefGoogle Scholar
  5. 5.
    M. Sexl, G. Bohm, D. Xu, et al., J. Cryst. Growth 175–176, 915 (1997).CrossRefGoogle Scholar
  6. 6.
    K. Onda, A. Fujihara, A. Vakejima, et al., IEEE Electron Device Lett. 19, 300 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    D. Xu, H. G. Heiss, S. A. Kraus, et al., IEEE Trans. Electron. Device 45, 21 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    N. Maeda, H. Ito, T. Enoki, et al., J. Appl. Phys. 81 (3), 1552 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    D. S. Ponomarev, I. S. Vasil’evskii, G. B. Galiev, et al., Nano Mikrosist. Tekh, No 12, 16 (2011).Google Scholar
  10. 10.
    M. V. Koval’chuk, A. L. Vasil’ev, R. M. Imamov, et al., Kristallografiya 56 (2), 324 (2011).Google Scholar
  11. 11.
    G. B. Galiev, I. S. Vasil’evskii, E. A. Klimov, et al., J. Mater. Res. 30 (20), 3020 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    K. Matsumura, D. Inoue, H. Nakano, et al., Proc. Int. Symp. GaAs and Related Compounds, Jersey, UK, 1990 (Inst. Phys. Conf. Ser. 11), p.465.Google Scholar
  13. 13.
    T. Akazaki, K. Arai, T. Enoki, et al., IEEE Electron Device Lett. 13, 325 (1992).ADSCrossRefGoogle Scholar
  14. 14.
    G. B. Galiev, I. S. Vasilevskii, E. A. Klimov, et al., Semiconductors 49 (2), 234 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    G. B. Galiev, S. S. Pushkarev, E. A. Klimov, et al., Crystallogr. Rep. 59 (2), 258 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    B. A. Aronzon, M. V. Kovalchuk, E. M. Pashaev, et al., J. Phys.: Condens. Matter 20, 145207 (2008).ADSGoogle Scholar
  17. 17.
    A. E. Blagov, A. L. Vasil’ev, A. S. Golubeva, et al., Crystallogr. Rep. 59 (3), 315 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    A. V. Butashin, V. M. Kanevskii, A. E. Muslimov, et al., Crystallogr. Rep. 60 (4), 565 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    M. V. Koval’chuk, P. A. Prosekov, M. A. Marchenkova, et al., Crystallogr. Rep. 59 (5), 679 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    R. N. Kyutt, Aktual. Vopr. Sovrem. Estestvozn, No 5, 43 (2007).Google Scholar
  21. 21.
    V. Holy, U. Pietsch, and T. Baumbach, High-Resolution X-ray Scattering from Thin Films and Multilayers (Springer, 1999).Google Scholar
  22. 22.
    D. K. Bowen and B. K. Tanner, High-Resolution X-ray Diffractometry and Topography (Taylor and Francis, London, 1998).Google Scholar
  23. 23.
    M. A. Chuev, A. A. Lomov, and R. M. Imamov, Crystallogr. Rep. 51 (2), 178 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    P. F. Fewster, Rep. Prog. Phys. 59, 1339 (1996).ADSCrossRefGoogle Scholar
  25. 25.
    S. I. Zheludeva, N. N. Novikova, M. V. Koval’chuk, et al., Crystallogr. Rep. 54 (6), 920 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    V. A. Bushuev and O. D. Roshchupkina, Izv. Ross. Akad. Nauk, Ser. Fiz, No 1, 64 (2007).Google Scholar
  27. 27.
    L. G. Parratt, Phys. Rev. 95 (2), 359 (1954).ADSCrossRefGoogle Scholar
  28. 28.
    T. Cheng, F. D. Ma, J. E. Zhou, et al., J. Miner. 64 (1), 167 (2012).Google Scholar
  29. 29.
    M. V. Koval’chuk, A. E. Blagov, A. G. Kulikov, et al., Crystallogr. Rep. 59 (6), 862 (2014).ADSCrossRefGoogle Scholar
  30. 30.
    V. M. Kaganer, R. Kohler, M. Schmidbaurer, and R. Opitz, Phys. Rev. B 55 (3), 1793 (1997).ADSCrossRefGoogle Scholar
  31. 31.
    G. B. Galiev, A. L. Vasil’ev, R. M. Imamov, et al., Kristallografiya 59 (6), 990 (2015)Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. E. Blagov
    • 1
    • 2
  • G. B. Galiev
    • 1
    • 3
  • R. M. Imamov
    • 1
  • E. A. Klimov
    • 3
  • O. A. Kondratev
    • 1
    • 2
  • Yu. V. Pisarevskii
    • 1
    • 2
  • P. A. Prosekov
    • 1
    • 2
  • S. S. Pushkarev
    • 1
    • 3
  • A. Yu. Seregin
    • 1
    • 2
  • M. V. Koval’chuk
    • 1
    • 2
  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics”Russian Academy of SciencesMoscowRussia
  2. 2.National Research Centre “Kurchatov Institute”MoscowRussia
  3. 3.Institute of Ultrahigh Frequency Semiconductor ElectronicsRussian Academy of SciencesMoscowRussia

Personalised recommendations