Skip to main content
Log in

Features of the structural states of KNbO3 single crystals before and after fast-neutron irradiation

  • Diffraction and Scattering of Ionizing Radiations
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Neutron irradiation is a unique tool for forming new structural states of ferroelectrics, which cannot be obtained by conventional methods. The inf luence of the irradiation by two doses of fast neutrons (F = 1 × 1017 and 3 × 1017 cm–2) on the structure and properties of KNbO3 single crystals has been considered for the first time. The developed method for taking into account the experimental correction to the diffuse scattering has been used to analyze the structural changes occurring in KNbO3 samples at T = 295 K and their correlations with the behavior of dielectric and nonlinear optical characteristics. The irradiation to the aforementioned doses retains the KNbO3 polar structure, shifting Т С to lower temperatures and significantly affecting only the thermal parameters and microstructure of single crystals. Neutron irradiation with small atomic displacements provides a structure similar to the high-temperature modification of an unirradiated KNbO3 crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Lines and A. M. Glass, Princiles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).

    Google Scholar 

  2. Defects and Surface-Induced Effects in Advanced Perovskites, Ed. by G. Borstel (Springer, 1999).

  3. G. S. Was, Fundamentals of Radiation Materials Science (Springer, Heidelberg, 2007).

    Google Scholar 

  4. R. E. Stoller, Comprehensive Nuclear Materials: Primary Radiation Damage Formation (Elsevier, 2012), p.293.

    Book  Google Scholar 

  5. S. P. Solov’ev, I. I. Kuz’min, and V. V. Zakurkin, Barium Titanate (Nauka, Moscow, 1973) [in Russian], p.263.

    Google Scholar 

  6. V. V. Zakurkin, S. P. Solov’ev, and I. I. Kuz’min, Izv. Akad. Nauk SSSR, Ser. Fiz. 35, 1148 (1971).

    Google Scholar 

  7. A. Holmes-Siedle and L. Adams, Handbook of Radiation Effects (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  8. E. V. Peshikov, Radiative Effects in Ferroelectrics (Fan, Tashkent, 1986) [in Russian], p.126.

    Google Scholar 

  9. J. F. Scott, Ferroelectric Memories (Springer, Berlin, 2000).

    Book  Google Scholar 

  10. S. Wada, A. Seike, and T. Tsurumi, Jpn. J. Appl. Phys. 40, 5690 (2001).

    Article  ADS  Google Scholar 

  11. K. Nakamura Tokiwa, and Y. Kawamura, J. Appl. Phys. 91, 9272 (2002).

    Article  ADS  Google Scholar 

  12. R. J. Reeves, M. G. Jani, B. Jassemnejad, et al., Phys. Rev. B 43, 71 (1991).

    Article  ADS  Google Scholar 

  13. M. Zgonik, R. Schlesser, I. Biaggio, et al., J. Appl. Phys. 74, 1287 (1993).

    Article  ADS  Google Scholar 

  14. J. C. Baumert, C. Walther, P. Buchmann, et al., Appl. Phys. Lett. 46, 1018 (1985).

    Article  ADS  Google Scholar 

  15. Photorefractive Materials and Their Applications, Parts I and II, Ed. by P. Günter and J. P. Huignard (Springer, Berlin, 1989).

  16. Physics of Ferroelectrics: A Modern Perspective, Ed. by K. M. Rabe (Springer, Berlin, 2007).

  17. G. A. Smolenskii, V. A. Bokov, V. A. Isupov, et al., Ferroelectrics and Related Materials, Ed. by G. A. Smolenskii (Gordon and Breach Science, Amsterdam, 1984).

  18. G. Shirane, N. Danner, A. Pavlovic, and R. Pepinsky, Phys. Rev. 93, 672 (1954).

    Article  ADS  Google Scholar 

  19. O. Hauser and M. Schenk, Phys. Status Solidi 18, 547 (1966).

    Article  Google Scholar 

  20. M. Schenk, Phys. Status Solidi 36, K31 (1969).

    Article  ADS  Google Scholar 

  21. V. A. D’yakov, A. A. Podshivalov, and V. S. Syrtsov, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron. 5, 28 (2004).

    Google Scholar 

  22. V. A. D’yakov, V. I. Pryalkin, and A. I. Kholodnykh, Kvantovaya Elektron. 8, 715 (1981).

    Google Scholar 

  23. Z. Samardzija, S. Bernik, R. B. Marinenko, et al., Microchim. Acta 145, 203 (2004).

    Article  Google Scholar 

  24. S. F. Dubinin and V. D. Parkhomenko, Fiz. Met. Metalloved. 90 (2), 83 (2000).

    Google Scholar 

  25. Yu. G. Chukalkin, V. R. Shtirts, and B. N. Goshchitskii, Phys. Status Solidi A 125, 301 (1991).

    Article  ADS  Google Scholar 

  26. A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, J. Nucl. Mater. 300, 242 (2002).

    Article  ADS  Google Scholar 

  27. C. J. Ball, R. G. Blake, D. J. Cassidy, and J. L. Woolfrey, J. Nucl. Mater. 51, 151 (1988).

    Article  ADS  Google Scholar 

  28. G. M. Sheldrick, Acta Crystallogr. A 64, 112 (2008).

    Article  ADS  Google Scholar 

  29. A. I. Stash, S. A. Ivanov, S. Yu. Stefanovich, et al., Kristallografiya 60 (1), 68 (2015).

    Google Scholar 

  30. N. W. Alcock, Crystallographic Computing, Ed. by F. R. Ahmed (Munksgaard, Copenhagen, 1970).

  31. A. I. Stash and V. E. Zavodnik, Crystallogr. Rep. 41 (3), 404 (1996).

    ADS  Google Scholar 

  32. E. A. Kotomin, R. I. Eglitis, G. Borstel, et al., Nucl. Instrum. Methods Phys. Res. B 166–167, 299 (2000).

    Article  Google Scholar 

  33. D. V. Kulikov and Yu. A. Trushin, Ferroelectrics 308, 5 (2004).

    Article  Google Scholar 

  34. B. K. Roul, J. Mater. Synth. Process. 7, 321 (1999).

    Article  Google Scholar 

  35. S. C. Abrahams, S. K. Kurtz, and P. B. Jamieson, Phys. Rev. 172, 551 (1968).

    Article  ADS  Google Scholar 

  36. L. A. Muradyan, S. F. Radaev, and V. I. Simonov, Methods of Structural Analysis (Nauka, Moscow, 1989) [in Russian], p.5.

    Google Scholar 

  37. L. Katz and H. D. Megaw, Acta Crystallogr. 22, 639 (1967).

    Article  Google Scholar 

  38. A. D. Hewat, J. Phys. C: Solid State Phys. 6, 2559 (1973).

    Article  ADS  Google Scholar 

  39. V. A. Shuvaeva and M. Yu. Antipin, Crystallogr. Rep. 40, 466 (1995).

    ADS  Google Scholar 

  40. N. Kumada, T. Kyoda, Y. Yonesaki, et al., Mater. Res. Bull. 42, 1856 (2007).

    Article  Google Scholar 

  41. V. G. Tsarkov and V. G. Tsirelson, Phys. Status Solidi B 167, 417 (1991).

    Article  ADS  Google Scholar 

  42. A. G. Kalinichev, J. D. Bass, C. S. Zhab, et al., J. Appl. Phys. 74, 6603 (1993).

    Article  ADS  Google Scholar 

  43. R. Comes, M. Lambert, and A. Guinier, Solid State Commun. 6, 715 (1968).

    Article  ADS  Google Scholar 

  44. R. Comes, M. Lambert, and A. Guinier, Acta Crystallogr. A 26, 244 (1970).

    Article  ADS  Google Scholar 

  45. M. Holma, N. Takesue, and H. Chen, Ferroelectrics 164, 237 (1995).

    Article  Google Scholar 

  46. N. Takesue, M. Maglione, and H. Chen, Phys. Rev. B 51, 6696 (1995).

    Article  ADS  Google Scholar 

  47. E. A. Kotomin and A. I. Popov, Nucl. Instrum. Methods Phys. Res. B 141, 1 (1998).

    Article  ADS  Google Scholar 

  48. E. A. Kotomin, R. I. Eglitis, G. Borstel, et al., Nucl. Instrum. Methods Phys. Res. B 166–167, 299 (2000).

    Article  Google Scholar 

  49. S. G. Ingle, J. G. Dupare, and R. N. Kakde, J. Phys. Chem. Solids 56, 173 (1995).

    Article  ADS  Google Scholar 

  50. B. K. Roul, R. N. P. Chaudhary, and K. V. Raod, Ferroelectrics Lett. 6, 139 (1986).

    Article  Google Scholar 

  51. R. I. Eglitis, E. A. Kotomin, A. V. Postnikov, et al., Ferroelectrics 229, 69 (1999).

    Article  Google Scholar 

  52. D. S. Gemmel and R. C. Mikkelson, Phys. Rev. B 6, 1613 (1972).

    Article  ADS  Google Scholar 

  53. E. C. Buck, Radiat. Eff. Defects Solids 133, 15 (1995).

    Article  ADS  Google Scholar 

  54. Q. Li, J. Chen, B.-L. Liao, and D. Feng, Radiat. Eff. Defects Solids 74, 307 (1983).

    Google Scholar 

  55. H. Chen, Y. Zhang, and Y. Lu, Nanoscale Res. Lett. 6, 530 (2011).

    Article  ADS  Google Scholar 

  56. K. Tanaka, K. Kakimoto, and H. Ohsato, J. Eur. Ceram Soc. 27, 3591 (2007).

    Article  Google Scholar 

  57. S. Sawai, H. Yamada, A. Iba, et al., Ferroelectrics 433, 45 (2012).

    Article  Google Scholar 

  58. C. Miclea, C. Tanasoiu, C. F. Miclea, et al., J. Phys. 128, 115 (2005).

    Google Scholar 

  59. M. I. Toacsan, A. Ioachim, L. Nedelcu, and H. V. Alexandru, Prog. Solid State Chem. 35, 531 (2007).

    Article  Google Scholar 

  60. P. W. M. Jacobs, E. A. Kotomin, and R. I. Eglitis, J. Phys.: Condens. Matter 12, 569 (2000).

    ADS  Google Scholar 

  61. E. V. Kolontsova, Usp. Fiz. Nauk 151, 149 (1987).

    Article  Google Scholar 

  62. D. Orobengoa, C. Capillas, M. I. Aroyo, and J. M. Perez-Mato, J. Appl. Crystallogr. A 42, 820 (2009).

    Article  Google Scholar 

  63. J. M. Perez-Mato, D. Orobengoa, and M. I. Aroyo, Acta Crystallogr. A 66, 558 (2010).

    Article  ADS  Google Scholar 

  64. H. F. Kay and P. Vousden, Philos. Mag. 40, 1019 (1949).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Stash.

Additional information

Original Russian Text © A.I. Stash, S.A. Ivanov, S.Yu. Stefanovich, A.V. Mosunov, V.M. Boyko, V.S. Ermakov, A.V. Korulin, A.I. Kalyukanov, 2017, published in Kristallografiya, 2017, Vol. 62, No. 1, pp. 23–32.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stash, A.I., Ivanov, S.A., Stefanovich, S.Y. et al. Features of the structural states of KNbO3 single crystals before and after fast-neutron irradiation. Crystallogr. Rep. 62, 31–39 (2017). https://doi.org/10.1134/S1063774517010230

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774517010230

Navigation