Crystallography Reports

, Volume 62, Issue 1, pp 148–156 | Cite as

Nature of impurities during protein crystallization

  • S. S. Baskakova
  • V. V. Volkov
  • T. V. Laptinskaya
  • M. S. Lyasnikova
  • A. E. Voloshin
  • M. V. Koval’chuk
Crystal Growth
  • 52 Downloads

Abstract

Lysozyme crystal growth was studied using reagents of different purity of three trademarks— Seikagaku Corporation (sixfold recrystallized lysozyme), Sigma-Aldrich (threefold recrystallized lysozyme), and Hampton Research (threefold recrystallized lysozyme). Solutions of these reagents were investigated by small-angle X-ray scattering, dynamic light scattering (DLS), ultracentrifugation, and electrophoresis. It was found that crystal-growth and oligomerization processes are more intense in solutions of the reagent of higher purity. The dependences of the fraction of lysozyme oligomers on the supersaturation and purity of the solution are analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Monaco and F. Rosenberger, J. Cryst. Growth 129, 465 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    A. J. Malkin, Yu. G. Kuznetsov, and A. McPherson, Surf. Sci. 393, 95 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    A. McPherson, Crystallization of Biological Macromolecules (Cold Spring Harbor Laboratory Press).Google Scholar
  4. 4.
    B. R. Thomas, P. G. Vekilov, and F. Rosenberger, Acta Crystallogr. 52, 776 (1996).Google Scholar
  5. 5.
    T. Nakada, G. Sazaki, S. Miyashita, et al., J. Cryst. Growth 196, 503 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    I. Yoshizaki, A. Kadowaki, Y. Iimura, et al., J. Synchrotron Radiat. 11, 30 (2004).CrossRefGoogle Scholar
  7. 7.
    D. C. Carter, K. Limit, J. X. Ho, et al., J. Cryst. Growth 196, 623 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    P. G. Vekilov, M. Ataka, and T. Katsuura, J. Cryst. Growth 130, 317 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    Z. Kam, H. B. Shore, and G. Feher, J. Mol. Biol. 123, 539 (1978).CrossRefGoogle Scholar
  10. 10.
    Y. Georgalis and W. Saenger, Adv. Colloid Interface Sci. 46, 165 (1993).CrossRefGoogle Scholar
  11. 11.
    A. Malkin and A. McPherson, J. Cryst. Growth 128, 1232 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    C. C. F. Blake, L. N. Johnson, G. A. Mair, et al., Proc._R. Soc. London B 167, 378 (1967).ADSCrossRefGoogle Scholar
  13. 13.
    C. C. F. Blake, D. F. Koenig, G. A. Mair, et al., Nature 206, 757 (1965).ADSCrossRefGoogle Scholar
  14. 14.
    S. B. Dubin, N. A. Clark, and G. B. Benedek, J. Chem. Phys. 54, 5158 (1971).ADSCrossRefGoogle Scholar
  15. 15.
    W. Ebershtein, Y. Georgalis, and W. Saenger, Eur. Biphys. J. 22, 359 (1993).CrossRefGoogle Scholar
  16. 16.
    M. Mushol and F. Rosenberg, J. Chem. Phys. 103, 10424 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    G. Chirico, S. Beretta, and G. Baldini, J. Chem. Phys. 110, 2297 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    S. Tanaka, K. Ito, R. Hayakawa, and M. Ataka, J. Chem. Phys. 111, 10330 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Georgalis, P. Umbach, and W. Saenger, J. Am. Chem. Soc. 121, 1627 (1999).CrossRefGoogle Scholar
  20. 20.
    T. Wakamatsu, Am. J. Anal. Chem. 5, 581 (2014).CrossRefGoogle Scholar
  21. 21.
    J. Garcia de la Torre, Biophys. Chem. 93, 159 (2001).CrossRefGoogle Scholar
  22. 22.
    A. Stradner, H. Sedgwick, F. Cardinaux, et al., Lett. Nature 432, 492 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    K. Onuma and K. Inaka, J. Cryst. Growth 310, 1174 (2008).ADSCrossRefGoogle Scholar
  24. 24.
    A. Shukla, E. Mylonas, E. Di Cola, et al., Proc. Natl. Acad. Sci. USA 105, 5075 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    P. Kowalczyk, A. Ciach, P. A. Gauden, and A. P. Terzyk, J. Colloid Interface Sci. 363, 579 (2011).CrossRefGoogle Scholar
  26. 26.
    W. Brown, Dynamic Light Scattering: the Method and Some Applications (Clarendon, Oxford, 1993).Google Scholar
  27. 27.
    A. V. Svanidze, S. G. Lushnikov, and L. A. Shuvalov, Crystallogr. Rep. 50 (5), 789 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    P. V. Konarev, V. V. Volkov, A. V. Sokolova, et al., J. Appl. Crystallogr. 36, 1277 (2003).CrossRefGoogle Scholar
  29. 29.
    D. Svergun, C. Barberato, and M. H. J. Koch, J. Appl. Crystallogr. 28, 768 (1995).CrossRefGoogle Scholar
  30. 30.
    P. V. Konarev, M. V. Petoukhov, and D. I. Svergun, J. Appl. Crystallogr. 34, 527 (2001).CrossRefGoogle Scholar
  31. 31.
    D. I. Svergun, Biophys. J. 76, 2879 (1999).ADSCrossRefGoogle Scholar
  32. 32.
    M. Shibayama, T. Karino, and S. Okabe, Polymer 47, 6446 (2006).CrossRefGoogle Scholar
  33. 33.
    M. A. Marchenkova, V. V. Volkov, A. E. Blagov, et al., Crystallogr. Rep. 61 (1), 5 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • S. S. Baskakova
    • 1
  • V. V. Volkov
    • 1
  • T. V. Laptinskaya
    • 2
  • M. S. Lyasnikova
    • 1
  • A. E. Voloshin
    • 1
  • M. V. Koval’chuk
    • 1
    • 3
  1. 1.Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”Russian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.National Research Centre “Kurchatov Institute,”MoscowRussia

Personalised recommendations