Nanocrystalline sp 2 and sp 3 carbons: CVD synthesis and applications

Abstract

The design and production of innovative materials based on nanocrystalline sp 2- and sp 3-coordinated carbons is presently a focus of the scientific community. We present a review of the nanostructures obtained in our labs using a series of synthetic routes, which make use of chemical vapor deposition (CVD) techniques for the selective production of non-planar graphitic nanostructures, nanocrystalline diamonds, and hybrid two-phase nanostructures.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. L. Terranova, V. Sessa, and M. Rossi, Chem. Vap. Depos. 12(6), 315 (2006).

    Article  Google Scholar 

  2. 2.

    V. Guglielmotti, S. Orlanducci, E. Tamburri, et al., Nuovo Cimento 36, 3 (2013).

    Google Scholar 

  3. 3.

    F. Toschi, V. Guglielmotti, I. Cianchetta, et al., Chem. Phys. Lett. 94, 539 (2012).

    Google Scholar 

  4. 4.

    S. Orlanducci, V. Sessa, M. L. Terranova, et al., Chem. Phys. Lett. 367 (1), 109 (2003).

    ADS  Article  Google Scholar 

  5. 5.

    S. Iijima, P. M. Ajayan, and T. Ichihashi, Phys. Rev. Lett. 69 (21), 3100 (1992).

    ADS  Article  Google Scholar 

  6. 6.

    S. Iijima and T. Ichihashi, Nature 363, 603 (1993).

    ADS  Article  Google Scholar 

  7. 7.

    D. S. Bethune, Ch. Kiang, M. S. De Vries, et al., Nature 363, 605 (1993).

    ADS  Article  Google Scholar 

  8. 8.

    N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev. Lett. 68, 54 (1992)

    Article  Google Scholar 

  9. 9.

    M. S. Dresselhaus, G. Dresselhaus and R. Saito, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    MATH  Google Scholar 

  10. 10.

    J. Prasek, J. Drbohlavova, J. Chomoucka, et al., J. Mater. Chem. 21, 15872 (2011).

    Article  Google Scholar 

  11. 11.

    S. Orlanducci, A. Fiori, E. Tamburri, et al., Cryst. Res. Technol. 40 (10–11), 11 (2005).

    Google Scholar 

  12. 12.

    V. Guglielmotti, S. Orlanducci, V. Sessa, et al., Il Nuovo Cimento C 34(4), 529 (2011).

    Google Scholar 

  13. 13.

    M. Dispenza, F. Brunetti, C. S. Cojocaru, et al., Proc. SPIE–Int. Soc. Opt. Eng. 7837, 783706 (2010).

    Google Scholar 

  14. 14.

    R. Angelucci, I. Boscolo, A. Ciorba, et al., Physica E 42, 1469 (2010).

    ADS  Article  Google Scholar 

  15. 15.

    M. L. Terranova, S. Piccirillo, V. Sessa, et al., Chem. Phys. Lett. 327 (5-6), 284 (2000).

    ADS  Article  Google Scholar 

  16. 16.

    V. L. Kuznetsov, A. L. Chuvilin, Y. V. Butenko, et al., Chem. Phys. Lett. 222 (4), 343 (1994)

    ADS  Article  Google Scholar 

  17. 17.

    S. Orlanducci, A. Fiori, E. Tamburri, et al., Cryst. Res. Technol. 40 (10-11), 11 (2005).

    Article  Google Scholar 

  18. 18.

    H. Ko, Y. Pikus, C. Jiang, et al., Appl. Phys. Lett. 85 (13), 2598 (2004).

    ADS  Article  Google Scholar 

  19. 19.

    A. Hirsch and O. Vostrowsky, in Dendrimers IV (Springer, Berlin, 2001), pp. 51–93.

    Book  Google Scholar 

  20. 20.

    S. Orlanducci, S. Gay, G. Reina, et al., Eur. Cells. Mater. 26 (Suppl. 6), 96 (2013).

    Google Scholar 

  21. 21.

    B. V. Spitsyn and B. V. Deryaguin, USSR Inventor’s Certificate No. 339134, Application No. 964957/716358 (July 10, 1956).

  22. 22.

    B. V. Spitsyn, L. L. Bouilov, and B. V. Deryaguin, J. Cryst. Growth 52, 219 (1981).

    ADS  Article  Google Scholar 

  23. 23.

    S. Matsumoto, Y. Sato, M. Kamo, et al., Jpn. J. Appl. Phys., 21 (4A), L183 (1982).

    ADS  Article  Google Scholar 

  24. 24.

    S. Matsumoto, Y. Sato, M. Tsutsumi, et al., J. Mater. Sci. 17 (11), 3106 (1982).

    ADS  Article  Google Scholar 

  25. 25.

    M. Kamo, Y. Sato, S. Matsumoto, et al., J. Cryst. Growth 62 (3), 642 (1983).

    ADS  Article  Google Scholar 

  26. 26.

    S. Matsumoto, J. Mater. Sci. Lett. 4 (5), 600 (1985).

  27. 27.

    M. Rossi, M. L. Terranova, S. Piccirillo, et al., Chem. Phys. Lett. 402 (4–6), 6 (2005).

    Google Scholar 

  28. 28.

    The Properties of Diamond, Ed. by J. E. Field (Academic, 1979).

  29. 29.

    A. Serra, D. Manno, T. Siciliano, et al., J. Appl. Phys. 94, 416 (2003).

    ADS  Article  Google Scholar 

  30. 30.

    S. Orlanducci, V. Sessa, M. L. Terranova, et al., Diam. Relat. Mater. 12 (12), 2186 (2003).

    ADS  Article  Google Scholar 

  31. 31.

    M. L. Terranova, V. Sessa, S. Piccirillo, et al., J. Vac. Sci. Technol. A 19 (6), 2920 (2001).

    ADS  Article  Google Scholar 

  32. 32.

    E. Tamburri, M. Anjellari, A. Valguarnera, et al., in Proc. 2015 IEEE 15th Int. Conf. on Nanotechnology (IEEE-NANO), 2015, p. 979.

    Book  Google Scholar 

  33. 33.

    A. Valguarnera, Master Degree Dissertation (University of Rome “Sapienza”, Rome, 2015).

    Google Scholar 

  34. 34.

    J. C. Angus, in Synthetic Diamond Films: Preparation, Electrochemistry, Characterization and Applications, Ed. by E. Brillas and C. A. Martinez-Huitle (Wiley, Hoboken NJ, USA, 2011).

  35. 35.

    J. M. Peralta-Hernandez, A. Hernandez-Ramirez, and J. L. Guzman-Mar, in Synthetic Diamond Films: Preparation, Electrochemistry, Characterization and Applications, Ed. by E. Brillas and C. A. Martinez-Huitle (Wiley, Hoboken NJ, USA, 2011).

  36. 36.

    D. J. Poferl, N. C. Gardner, and J. C. Angus, J. Appl. Phys. 44, 1428 (1973).

    ADS  Article  Google Scholar 

  37. 37.

    J. V. Macpherson, Phys. Chem. Chem. Phys. 17 (5), 2935 (2015).

    Article  Google Scholar 

  38. 38.

    S. Orlanducci, V. Guglielmotti, I. Cianchetta, et al., Nanosci. Nanotech. Let. 4 (3), 338 (2012).

    Article  Google Scholar 

  39. 39.

    S. Orlanducci, F. Toschi, V. Guglielmotti, et al. Nanosci. Nanotech. Lett. 3, 83 (2011).

  40. 40.

    M. Rossi, G. Vitali, M. L. Terranova, et al., Appl. Phys. Lett. 63 (20), 2765 (1993).

    ADS  Article  Google Scholar 

  41. 41.

    O. Shenderova, D. Brenner, and R. Rouff, Nano Lett. 3 (6), 805 (2003).

    ADS  Article  Google Scholar 

  42. 42.

    V. Guglielmotti, S. Chieppa, S. Orlanducci, et al., Appl. Phys. Lett. 95 (22), 222113 (2009).

    ADS  Article  Google Scholar 

  43. 43.

    A. Vul’, K. Reich, E. Eidelman, et al., Adv. Sci. Lett. 3, 110 (2010).

    Article  Google Scholar 

  44. 44.

    M. L. Terranova, S. Orlanducci, A. Fiori, et al., Chem. Mater. 17 (12), 3214 (2005).

    Article  Google Scholar 

  45. 45.

    T. Suzuki, M. Yagi, K. Shibuki, et al., Appl. Phys. Lett. 65, 540 (1994).

    ADS  Article  Google Scholar 

  46. 46.

    L. L Regel and W. R. Wilcox, J. Mater. Sci. Lett. 19, 455 (2000).

    Article  Google Scholar 

  47. 47.

    A. S. Barnard, M. L. Terranova, and M. Rossi, Chem. Mater. 17 (3), 527 (2005).

    Article  Google Scholar 

  48. 48.

    M. L. Terranova, S. Orlanducci, E. Tamburri, et al., J. Power Sources 246, 167 (2014).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Tamburri.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Terranova, M.L., Rossi, M. & Tamburri, E. Nanocrystalline sp 2 and sp 3 carbons: CVD synthesis and applications. Crystallogr. Rep. 61, 897–906 (2016). https://doi.org/10.1134/S1063774516060158

Download citation