Advertisement

Crystallography Reports

, Volume 61, Issue 5, pp 768–778 | Cite as

Resonant diffraction of synchrotron radiation: New possibilities

  • E. N. Ovchinnikova
  • E. Kh. Mukhamedzhanov
Diffraction and Scattering of Ionizing Radiations
  • 35 Downloads

Abstract

Resonant diffraction of synchrotron radiation (SR) is a modern method of studying the structure and properties of condensed matter that can be implemented on third-generation synchrotrons. This method allows one to investigate local properties of media (including magnetic and electronic ones) and observe thermal vibrations, defects, and orbital and charge orderings. A brief review of the advance provided by SR resonant diffraction is presented, and the capabilities of this method for analyzing phase transitions are considered in more detail by the example of potassium dihydrogen phosphate and rubidium dihydrogen phosphate crystals. It is shown that the investigation of the temperature dependence of forbidden reflections not only makes it possible to observe the transition from para- to ferroelectric phase, but also gives information about the proton distribution at hydrogen bonds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Dmitrienko and E. N. Ovchinnikova, Kristallografiya 48 (6), S59 (2003).Google Scholar
  2. 2.
    S. W. Lovesey, E. Balcar, K. Knight, and J. Fernández–Rodríguez, Phys. Rep. 411, 233 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    S. W. Lovesey and S. P. Collins, X-Ray Scattering and Absorption by Magnetic Materials (Clarendon, Oxford, 1996).Google Scholar
  4. 4.
    M. Blume, Magnetic Effects in Anomalous Dispersion: in Resonant Anomalous X-Ray Scattering (Elsevier, New York, 1991), p.495.Google Scholar
  5. 5.
    Magnetism: A Synchrotron Radiation Approach, Ed. by E. Beaurepaire (Springer, 2006).Google Scholar
  6. 6.
    F. de Bergevin and M. Brunel, Acta Crystallogr. A 37, 314 (1981)ADSCrossRefGoogle Scholar
  7. 6a.
    F. de Bergevin and M. Brunel, Acta Crystallogr. A 37, 324 (1981).ADSCrossRefGoogle Scholar
  8. 7.
    D. Gibbs, D. Moncton, and K. d’Amico, J. Appl. Phys. 57, 3619 (1985).ADSCrossRefGoogle Scholar
  9. 8.
    K. Namikawa, M. Ando, T. Nakajima, and H. Kawata, J. Phys. Soc. Jpn. 54, 4099 (1985).ADSCrossRefGoogle Scholar
  10. 9.
    V. E. Dmitrienko, K. Ishida, A. Kirfel, and E. N. Ovchinnikova, Acta Crystallogr. A 61, 481 (2005).ADSCrossRefGoogle Scholar
  11. 10.
    J.-L. Hodeau, V. Favre-Nicolin, S. Bos, et al., Chem. Rev. 101, 1843 (2001).CrossRefGoogle Scholar
  12. 11.
    V. A. Belyakov and V. E. Dmitrienko, Usp. Fiz. Nauk 158, 679 (1989).CrossRefGoogle Scholar
  13. 12.
    V. E. Dmitrienko, Acta Crystallogr. A 39, 29 (1983).CrossRefGoogle Scholar
  14. 13.
    D. Templeton and L. Templeton, Acta Crystallogr. A 41, 133 (1985).CrossRefGoogle Scholar
  15. 14.
    D. H. Templeton and L. K. Templeton, Phys. Rev. B 49, 14850 (1994).ADSCrossRefGoogle Scholar
  16. 15.
    P. Carra and B. Thole, Rev. Mod. Phys. 66, 1509 (1994).ADSCrossRefGoogle Scholar
  17. 16.
    K. D. Finkelstein, Q. Shen, and S. Shastri, Phys. Rev. Lett. 69, 1612 (1992).ADSCrossRefGoogle Scholar
  18. 17.
    V. E. Dmitrienko and E. N. Ovchinnikova, Acta Crystallogr. A 57, 642 (2001).CrossRefGoogle Scholar
  19. 18.
    S. Di Matteo, Y. Joly, A. Bombardi, et al., Phys. Rev. Lett. 91, 257402 (2003).ADSCrossRefGoogle Scholar
  20. 19.
    Y. Murakami, H. Kawada, H. Kawata, et al., Phys. Rev. Lett. 80, 1932 (1998).ADSCrossRefGoogle Scholar
  21. 20.
    N. Binggeli and M. Altarelli, Phys. Rev. B 70, 085117 (2004).ADSCrossRefGoogle Scholar
  22. 21.
    V. Dmitrienko, E. Ovchinnikova, and K. Ishida, Pis’ma Zh. Eksp. Teor. Fiz. 69, 885 (1999).Google Scholar
  23. 22.
    V. E. Dmitrienko and E. N. Ovchinnikova, Acta Crystallogr. A 56, 40 (2000).CrossRefGoogle Scholar
  24. 23.
    V. E. Dmitrienko and E. N. Ovchinnikova, Acta Crystallogr. A 56, 2 (2000).CrossRefGoogle Scholar
  25. 24.
    J. Kokubun, M. Kanazawa, K. Ishida, and V. E. Dmitrienko, Phys. Rev. B 64, 073203 (2001).ADSCrossRefGoogle Scholar
  26. 25.
    A. Kirfel, J. Grybos, and V. E. Dmitrienko, Phys. Rev. B 66, 165202 (2002).ADSCrossRefGoogle Scholar
  27. 26.
    S. P. Collins, D. Laundy, V. E. Dmitrienko, et al., Phys. Rev. B 68, 064110 (2003).ADSCrossRefGoogle Scholar
  28. 27.
    G. Beutier, S. P. Collins, G. Nisbet, et al., Eur. Phys. J.: Spec. Top. 208, 53 (2012).Google Scholar
  29. 28.
    V. E. Dmitrienko, E. N. Ovchinnikova, S. P. Collins, et al., Nature Nature Phys. 10, 202 (2014).ADSCrossRefGoogle Scholar
  30. 29.
    E. Kh. Mukhamedzhanov, M. V. Koval’chuk, M. M. Borisov, et al., Kristallografiya 55 (1), 187 (2010).Google Scholar
  31. 30.
    G. Beutier, S. P. Collins, E. N. Ovchinnikova, et al., J. Phys.: Conf. Ser. 519, 012006 (2014).ADSGoogle Scholar
  32. 31.
    C. Richter, D. V. Novikov, E. K. Mukhamedzhanov, et al., Phys. Rev. B 89, 094110 (2014).ADSCrossRefGoogle Scholar
  33. 32.
    G. Beutier, S. P. Collins, G. Nisbet, et al., Phys. Rev. B 92, 214116 (2015).ADSCrossRefGoogle Scholar
  34. 33.
    F. Jona and G. Shirane, Ferroelectric Crystals (Dover, New York, 1993).Google Scholar
  35. 34.
    M. Lines and A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, Oxford, 2001).CrossRefGoogle Scholar
  36. 35.
    J. C. Slater, J. Chem. Phys. 9, 16 (1941).ADSCrossRefGoogle Scholar
  37. 36.
    Y. Takagi, J. Phys. Soc. Jpn. 3, 271 (1948).ADSCrossRefGoogle Scholar
  38. 37.
    M. E. Senko, Phys. Rev. 121, 1599 (1961).ADSCrossRefGoogle Scholar
  39. 38.
    R. J. Nelmes, W. F. Kuhs, C. J. Howard, et al., J. Phys. C 18, L711 (1985).ADSCrossRefGoogle Scholar
  40. 39.
    R. Blinc, J. Phys. Chem. Solids V 13, 204 (1960).ADSCrossRefGoogle Scholar
  41. 40.
    H. Schmidt, Ferroelectrics 72, 157 (1987).CrossRefGoogle Scholar
  42. 41.
    M. Tokunaga and T. Matsubara, Ferrolectrics 72, 175 (1987).CrossRefGoogle Scholar
  43. 42.
    H. Sugimoto and S. Ikeda, J. Phys.: Condens. Matter 8, 03 (1996).Google Scholar
  44. 43.
    R. J. Nelmes, J. Phys. C 21, L881 (1988).ADSCrossRefGoogle Scholar
  45. 44.
    A. Bussmann-Holder and K. H. Michel, Phys. Rev. Lett. 80, 2173 (1998).ADSCrossRefGoogle Scholar
  46. 45.
    S. Koval, J. Kohanoff, R. L. Migoni, and E. Tosatti, Phys. Rev. Lett. 89, 187602 (2002).ADSCrossRefGoogle Scholar
  47. 46.
    S. Koval, J. Kohanoff, J. Lasave, et al., Phys. Rev. B 71, 184102 (2005).ADSCrossRefGoogle Scholar
  48. 47.
    J. Lasave, S. Koval, N. S. Dalal, and R. Migoni, Phys. Rev. B 72, 104104 (2005).ADSCrossRefGoogle Scholar
  49. 48.
    G. F. Reiter, J. Mayers, and P. Platzman, Phys. Rev. Lett. 89, 135505 (2002).ADSCrossRefGoogle Scholar
  50. 49.
    A. R. Al-Karaghouli, B. Abdul-Wahab, E. Ajaj, and A. Sequeira, Acta Crystallogr. B 34, 1040 (1978).CrossRefGoogle Scholar
  51. 50.
    N. Kennedy and R. Nelmes, J. Phys. C 13, 4841 (1980).ADSCrossRefGoogle Scholar
  52. 51.
    M. Ichikawa, K. Motida, and N. Yamada, Phys. Rev. B 36, 874 (1987).ADSCrossRefGoogle Scholar
  53. 52.
    R. J. Nelmes, G. M. Meyer, and J. E. Tibballs, J. Phys. C 15, 59 (1982).ADSCrossRefGoogle Scholar
  54. 53.
    International Tables for Crystallography, Ed. by T. Hahn (Springer, 2005), Vol. A.Google Scholar
  55. 54.
    Yu. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, Moscow, 1975) [in Russian].Google Scholar
  56. 55.
    E. N. Ovchinnikova, V. E. Dmitrienko, A. P. Oreshko, et al., J. Phys.: Condens. Matter 22, 355404 (2010).Google Scholar
  57. 56.
    E. N. Ovchinnikova, V. E. Dmitrienko, K. Ishida, et al., Nucl. Instrum. Methods Phys. Res. A 543, 122 (2005).ADSCrossRefGoogle Scholar
  58. 57.
    A. P. Oreshko, E. N. Ovchinnikova, G. Beutier, et al., J. Phys.: Condens. Matter 24, 245403 (2012).ADSGoogle Scholar
  59. 58.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).ADSCrossRefGoogle Scholar
  60. 59.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).ADSCrossRefGoogle Scholar
  61. 60.
    O. Bunau and Y. Joly, J. Phys.: Condens. Matter 21, 345501 (2009).Google Scholar
  62. 61.
    www.neel.cnrs.fr/fdmnes.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia
  2. 2.National Research Centre “Kurchatov Institute”MoscowRussia

Personalised recommendations