Crystallography Reports

, Volume 61, Issue 5, pp 857–865 | Cite as

Possibilities of surface-sensitive X-ray methods for studying the molecular mechanisms of interaction of nanoparticles with model membranes

  • N. N. Novikova
  • M. V. Kovalchuk
  • S. N. Yakunin
  • O. V. Konovalov
  • N. D. Stepina
  • A. V. Rogachev
  • E. A. Yurieva
  • I. V. Marchenko
  • T. V. Bukreeva
  • O. S. Ivanova
  • A. E. Baranchikov
  • V. K. Ivanov
Surface and Thin Films

Abstract

The processes of structural rearrangement in a model membrane, i.e., an arachic acid monolayer formed on a colloidal solution of cerium dioxide or magnetite, are studied in situ in real time by the methods of X-ray standing waves and 2D diffraction. It is shown that the character of the interaction of nanoparticles with the monolayer is determined by their nature and sizes and depends on the conditions of nanoparticle synthesis. In particular, the structure formation in the monolayer–particle system is greatly affected by the stabilizer (citric acid), which is introduced into the colloidal solution during synthesis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Als-Nielsen and D. McMorrow, Elements of Modern X-Ray Physics (Wiley, New York, 2001).Google Scholar
  2. 2.
    J. Daillant and A. Gibaud, X-Ray and Neutron Reflectivity: Principles and Applications (Springer, Berlin, 2009).CrossRefGoogle Scholar
  3. 3.
    M. V. Koval’chuk and V. G. Kon, Usp. Fiz. Nauk 149 (5), 69 (1986).CrossRefGoogle Scholar
  4. 4.
    I. A. Vartanyants and M. V. Kovalchuk, Rep. Prog. Phys. 64 (9), 1009 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    P. S. Pershan and M. Schlossman, Liquid Surfaces and Interfaces: Synchrotron X-Ray Methods (Cambridge University Press, Cambridge, 2012).CrossRefGoogle Scholar
  6. 6.
    S. I. Zheludeva, N. N. Novikova, O. V. Konovalov, et al., X-Ray Standing Wave Technique: Principles and Applications (World Scientific, New York, 2013), Vol. 1, p.355.CrossRefGoogle Scholar
  7. 7.
    S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, et al., Usp. Khim. 74 (6), 539 (2005).CrossRefGoogle Scholar
  8. 8.
    C. Berry and A. Curtis, J. Phys. D: Appl. Phys. 36, R198 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    N. M. Zholobak, V. K. Ivanov, A. B. Shcherbakov, et al., J. Photochem. Photobiol., B 102 (1), 32 (2011).CrossRefGoogle Scholar
  10. 10.
    V. K. Ivanov, A. B. Shcherbakov, and A. V. Usatenko, Russian Chem. Rev. 78 (9), 855 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    V. K. Ivanov, O. S. Polezhaeva, A. B. Shcherbakov, et al., Russ. J. Inorg. Chem. 55 (1), 1 (2010).CrossRefGoogle Scholar
  12. 12.
    R. Massart, IEEE Trans. Magn. 17 (2), 1247 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    V. M. Kaganer, H. Möhwald, and P. Dutta, Rev. Mod. Phys. 71 (3), 779 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    S. I. Zheludeva, N. N. Novikova, M. V. Koval’chuk, et al., Crystallogr. Rep. 54 (6), 920 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    N. Novikova, M. Kovalchuk, N. Stepina, et al., J. Synchrotron Radiat. 22 (4), 1001 (2015).CrossRefGoogle Scholar
  16. 16.
    D. M. Smilgies, N. Boudet, B. Struth, et al., J. Synchrotron Radiat. 12, 329 (2005).CrossRefGoogle Scholar
  17. 17.
    K. Kjaer, J. Als-Nielsen, C. A. Helm, et al., J. Phys. Chem. 93 (8), 3200 (1989).CrossRefGoogle Scholar
  18. 18.
    C. Ohe, H. Ando, N. Sato, et al., J. Phys. Chem. B 103 (3), 435 (1999).CrossRefGoogle Scholar
  19. 19.
    C. Stefaniu, G. Brezesinski, and H. Möhwald, Soft Matter 8 (30), 7952 (2012).CrossRefGoogle Scholar
  20. 20.
    A. Caillet, F. Puel, and G. Fevotte, Chem. Eng. Proc. 47 (3), 377 (2008).CrossRefGoogle Scholar
  21. 21.
    K. Ohgaki, Y. Makihara, M. Morishita, et al., Chem. Eng. Sci. 46 (12), 3283 (1991).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • N. N. Novikova
    • 1
  • M. V. Kovalchuk
    • 1
  • S. N. Yakunin
    • 1
  • O. V. Konovalov
    • 2
  • N. D. Stepina
    • 3
  • A. V. Rogachev
    • 1
    • 4
  • E. A. Yurieva
    • 5
  • I. V. Marchenko
    • 1
    • 3
  • T. V. Bukreeva
    • 1
    • 3
  • O. S. Ivanova
    • 6
  • A. E. Baranchikov
    • 6
  • V. K. Ivanov
    • 6
  1. 1.National Research Centre “Kurchatov Institute,”MoscowRussia
  2. 2.European Synchrotron Radiation FacilityGrenobleFrance
  3. 3.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of SciencesMoscow119933Russia
  4. 4.Moscow Institute of Electronics and MathematicsNational Research University Higher School of EconomicsMoscowRussia
  5. 5.Moscow Research Institute of Pediatrics and Pediatric SurgeryMoscowRussia
  6. 6.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations