Advertisement

Crystallography Reports

, Volume 61, Issue 5, pp 703–717 | Cite as

X-ray and synchrotron methods in studies of cultural heritage sites

  • M. V. Koval’chuk
  • E. B. Yatsishina
  • A. E. Blagov
  • E. Yu. Tereshchenko
  • P. A. Prosekov
  • Yu. A. Dyakova
Reviews

Abstract

X-ray and synchrotron methods that are most widely used in studies of cultural heritage objects (including archaeological sites)—X-ray diffraction analysis, X-ray spectroscopy, and visualization techniques— have been considered. The reported examples show high efficiency and informativeness of natural science studies when solving most diverse problems of archaeology, history, the study of art, museology, etc.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Kosolapov, Natural-Science Methods in the Examination of Art Products (Izd-vo Gos. Ermitazha, St. Petersburg, 2010) [in Russian].Google Scholar
  2. 2.
    Natural-Science Methods in Humanitarian Research: Proc. Conference–Seminar, Ed. by M. V. Koval’chuk et al. (Izd-vo National Research Centre “Kurchatov Institute”, Moscow, 2015).Google Scholar
  3. 3.
    M. Angel Rogerio-Candelera, M. Lazzari, and E. Cano, Science and Technology for the Conservation of Cultural Heritage (CRC Press, 2013).CrossRefGoogle Scholar
  4. 4.
    A. Gates Glenn, Am. Ceram. Soc. Bull. 93 (7), 20 (2014).Google Scholar
  5. 5.
    D. V. Stevens, A Conservation J. 59, 12 (2011).Google Scholar
  6. 6.
    M. Uda, G. Demortier, and I. Nakai, X-Rays for Archeology (Springer Science and Business Media, 2005).CrossRefGoogle Scholar
  7. 7.
    M. Alfeld, K. Janssens, J. Dik, et al., J. Anal. At. Spectrom. 26, 899 (2011).CrossRefGoogle Scholar
  8. 8.
    K. Janssens, Modern Methods for Analysing Archaeological and Historical Glass (Wiley, 2013), Vol.1.Google Scholar
  9. 9.
    I. V. Koval’chuk, S. I. Zheludeva, and V. L. Nosik, Priroda (Moscow, Russ. Fed.), No. 2, 54 (1997).Google Scholar
  10. 10.
    M. V. Koval’chuk, N. N. Novikova, and S. N. Yakunin, Priroda (Moscow, Russ. Fed.), No. 3, 14 (2012).Google Scholar
  11. 11.
    M. V. Koval’chuk, Science and Life: My Convergence, Vol. 2, Selected Works (IKTs Akademizdat, Moscow, 2011) [in Russian].Google Scholar
  12. 12.
    A. S. Ilyushin and M. V. Koval’chuk, Crystallogr. Rep. 57 (5), 617 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    B. K. Vainshtein, Modern Crystallography, Vol. 1: Symmetry of Crystals. Methods of Structural Crystallography (Nauka, Moscow, 1979) [in Russian], p.384.Google Scholar
  14. 14.
    R. Guinebretière. X-Ray Diffraction by Polycrystalline Materials (Wiley–ISTE, 2007), p. 351.CrossRefGoogle Scholar
  15. 15.
    A. V. Alekseev and S. A. Gromilov, J. Struct. Chem. 51 (1), 156 (2010).CrossRefGoogle Scholar
  16. 16.
    E. K. Vasil’ev and M. M. Nakhmanson, Qualitative X-Ray Diffraction Analysis (Nauka, Novosibirsk, 1986) [in Russian].Google Scholar
  17. 17.
    I. N. Nedoma, Interpretation of X-Ray Powder Diffraction Patterns (Metallurgiya, Moscow, 1975) [in Russian].Google Scholar
  18. 18.
    P. Bastie, B. Hamelin, F. Fiori, et al., Meas. Sci. Technol. 17, L1 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    F. Meirer, Y. Liu, E. Pouyet, et al., J. Anal. At. Spectrom. 28, 1870 (2013).CrossRefGoogle Scholar
  20. 20.
    G. McCafferty et al., La Tinaja: Newslett. Archeol. Stud. 18 (2) (2007).Google Scholar
  21. 21.
    J. Vecstaudža, D. Jakovlevs, L. Berzina-Cimdina, and V. Stikane, Mater. Sci. Appl. Chem. 29, 40 (2013).CrossRefGoogle Scholar
  22. 22.
    M. Muller, B. Murphy, M. Burghammer, et al. Spectrochim. Acta B 59 (10), 1669 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).MATHGoogle Scholar
  24. 24.
    SIEMENS SOMATOM Definition AS/AS+. http://www.med.siemens.ru/260/272/452/1423/.Google Scholar
  25. 25.
    A. Gleen, Am. Ceram. Soc. Bull. 93 (7), 20 (2014).Google Scholar
  26. 26.
    http://www.history.com/new/ct-scan-reveals-mummified-monk-inside-ancient-buddha-statue.Google Scholar
  27. 27.
    V. Mocella, E. Brun, C. Ferrero, and D. Delattre, Nature Commun. 6, 5895 (2015).ADSCrossRefGoogle Scholar
  28. 28.
    A. P. Petrakov, Tech. Phys. 48 (5), 607 (2003).CrossRefGoogle Scholar
  29. 29.
    F. Tony, B. Yanis, M. Zenophon, et al., Nature 44, 587 (2006).Google Scholar
  30. 30.
    N. V. Polos’mak, Nauka iz Pervykh Ruk 35 (5), 82 (2010).Google Scholar
  31. 31.
    E. Simioni, F. Ratti, I. Calliari, and L. Poletto, Appl. Opt. 50 (19), 3282 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    http://www.dailymail.co/uk/sciencetech/article-2833174/A-ppek-inside-Viking-piggybank-CT-scanstreasure-chest-revela-hidden-brooches-gold-ingotsivory-beads.html.Google Scholar
  33. 33.
    ESRF News. http://www.esrf.eu/home/news/general/content-news/general/x-ray-vision-decipherarchaeological-mystery.html.Google Scholar
  34. 34.
    M. W. Ainsworth et al., Art and Autoradiography: Insights into the Genesis of Painting by Rembrandt, Van Dyck and Vermeer (Metropolitan Museum of Art, 1987).Google Scholar
  35. 35.
    M. Mantler and M. Schreiner, X-Ray Spectrom. 29, 3 (2000).CrossRefGoogle Scholar
  36. 36.
    T. Pantazis, A. G. Karydas, Chr. Doumas, et al., Aegaeum 24, 18 (2003).Google Scholar
  37. 37.
    J. Plesters, Cross-Section and Chemical Analysis of Paint Samples (1956).Google Scholar
  38. 38.
    Archaeol. J. Archive. http://www.archive.archaeology. org/0801/treches/colorgods.html.Google Scholar
  39. 39.
    A. S. Afonasina, ΠPAHMA 1 (1) 31 (2014).Google Scholar
  40. 40.
    K. Janssens, M. Alfeld, G. Van der Snickt, et al., Annu. Rev. Anal. Chem. 6, 399 (2013).CrossRefGoogle Scholar
  41. 41.
    S. Legrand, F. Vanmeert, G. Van der Snickt, et al., Heritage Sci. 2, 13 (2014).CrossRefGoogle Scholar
  42. 42.
    http://www.bbc.com/new/entertainment-arts-2940793.Google Scholar
  43. 43.
    M. Alfeld, W. De Nolf, S. Cagno, et al., J. Anal. At. Spectrom. 28, 40 (2013).CrossRefGoogle Scholar
  44. 44.
    M. Melcher, M. Schreiner, B. Bühler, et al., Archeol. Sci. Rev. d’archeometrie 33, 169 (2009).Google Scholar
  45. 45.
    Fanagoria: Results of Archaeological Study, Ed. by M. Yu. Treister, Vol. 2: Gold of Fanagoria (Institute of Archaeology, Moscow, 2015) [in Russian], p.600.Google Scholar
  46. 46.
    J. L. Perez-Rodriguez, M. D. Robador, M. C. Jimenez de Haro, et al., Heritage Sci. 1 (4), 1 (2013).Google Scholar
  47. 47.
    V. A. Trunova and N. V. Polos’mak, Nauka iz Pervykh Ruk 7 (1), 38 (2006).Google Scholar
  48. 48.
    Ya. V. Zubavichus and Yu. L. Slovokhotov, Usp. Khim. 70 (5), 458 (2001).CrossRefGoogle Scholar
  49. 49.
    I. Reiche and E. Chalmin, J. Anal. At. Spectrom. 23, 799 (2008).CrossRefGoogle Scholar
  50. 50.
    L. Wang and C. Wang, J. Anal. Atomic Spectrom. 26, 1796 (2011).CrossRefGoogle Scholar
  51. 51.
    J. Zhu, W. Luo, D. Chen, et al., J. Phys.: Conf. Ser. 430, 298 (2013).Google Scholar
  52. 52.
    M. O. Figueiredo, T. P. Silva, and J. P. Veiga, Appl. Phys. A 83, 209 (2006).ADSCrossRefGoogle Scholar
  53. 53.
    M. Cotte, E. Welcomme, V. A. Solé, et al., Anal. Chem. 79, 6988 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • M. V. Koval’chuk
    • 1
    • 2
  • E. B. Yatsishina
    • 1
    • 2
  • A. E. Blagov
    • 1
    • 2
  • E. Yu. Tereshchenko
    • 1
    • 2
  • P. A. Prosekov
    • 1
    • 2
  • Yu. A. Dyakova
    • 1
    • 2
  1. 1.National Research Centre “Kurchatov Institute”MoscowRussia
  2. 2.Shubnikov Institute of CrystallographyFederal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of SciencesMoscowRussia

Personalised recommendations