Advertisement

Crystallography Reports

, Volume 61, Issue 5, pp 744–759 | Cite as

Formation of partially ordered organic planar systems based on the in situ control of their structural organization

  • Yu. A. Dyakova
  • M. A. Marchenkova
Reviews

Abstract

The possibilities of significantly improving the quality of planar systems based on photoactive porphyrin–fullerene dyads, layers based on cytochrome c and cardiolipin, and lysozyme crystals and films using a complex of in situ X-ray methods and simulation are described. The potential of X-ray phase-sensitive and surface-sensitive methods developed by M.V. Koval’chuk and researchers from his school in monitoring all stages of synthesis of partially ordered organic structure is demonstrated. This approach shows its efficiency for in situ studies: starting from the formation of complexes in solutions up to the growth of protein films and crystals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Koval’chuk, Science and Life: My Convergence (IKTs Akademkniga, Moscow, 2011) [in Russian].Google Scholar
  2. 2.
    M. V. Koval’chuk and V. G. Kon, Usp. Fiz. Nauk 149, 69 (1986).CrossRefGoogle Scholar
  3. 3.
    M. V. Koval’chuk and V. G. Kon, Nauka Zhizn’, No. 7, 25 (1986).Google Scholar
  4. 4.
    I. A. Vartanyantz and M. V. Kovalchuk, Rep. Prog. Phys. 64, 1009 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    M. V. Koval’chuk, S. I. Zheludeva, and B. L. Nosik, Priroda (Moscow, Russ. Fed.), No. 2, 54 (1997).Google Scholar
  6. 6.
    A. M. Afanas’ev, M. V. Kovalchuk, E. K. Kov’ev, et al., Phys. Status Solidi A 42, 415 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    M. J. Bedzyk, G. Materlik, and M. V. Kovalchuk, Phys. Rev. B 30, 4881 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    S. I. Zheludeva, M. V. Koval’chuk, S. Lagomarsino, et al., Pis’ma Zh. Eksp. Teor. Fiz. 52 (3), 804 (1990).ADSGoogle Scholar
  9. 9.
    S. I. Zheludeva, M. V. Kovalchuk, N. N. Novikova, et al., J. Phys. D: Appl. Phys. 26, A202 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    M. V. Koval’chuk, V. V. Klechkovskaya, and L. A. Feigin, Priroda (Moscow, Russ. Fed.), No. 12, 45 (2003).Google Scholar
  11. 11.
    I. P. Kuranova and M. V. Koval’chuk, Priroda (Moscow, Russ. Fed.), No. 3, 12 (2014).Google Scholar
  12. 12.
    K. M. Boyko, V. O. Popov, and M. V. Kovalchuk, Russ. Chem. Rev. 84 (8), 853 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    E. Schneck, E. Papp-Szabo, B. E. Quinn, et al., J. R. Soc., Interface. 6, 671 (2009).CrossRefGoogle Scholar
  14. 14.
    L. T. Nguyen, A. J. Musser, E. J. Vorenkamp, et al., Langmuir 17, 14073 (2010).CrossRefGoogle Scholar
  15. 15.
    L. Cristofolini, T. Berzina, V. Erokhin, et al., Colloids Surf. A 321, 158 (2008).CrossRefGoogle Scholar
  16. 16.
    J. S. Pedersen and I. W. Hamley, J. Appl. Crystallogr. 27, 29 (1994).CrossRefGoogle Scholar
  17. 17.
    S. K. Ghose and B. N. Dev, Phys. Rev. B 63, 245409 (2001).ADSCrossRefGoogle Scholar
  18. 18.
    L. G. Parratt, Phys. Rev. 95, 359 (1954).ADSCrossRefGoogle Scholar
  19. 19.
    S. I. Zheludeva, N. N. Novikova, N. D. Stepina, et al., Spectrochim. Acta B 63, 1399 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    S. I. Zheludeva, M. V. Kovalchuk, S. Lagomarsino, et al., Thin Solid Films 193, 395 (1991).ADSGoogle Scholar
  21. 21.
    S. I. Zheludeva, M. V. Kovalchuk, N. N. Novikova, et al., Mater. Sci. Eng. C 211 (1995).Google Scholar
  22. 22.
    N. N. Novikova, E. A. Yur’eva, S. I. Zheludeva, et al., J. Synchrotron Radiat. 12, 511 (2005).CrossRefGoogle Scholar
  23. 23.
    N. N. Novikova, S. I. Zheludeva, M. V. Kovalchuk, et al., Crystallogr. Rep. 54 (7), 1208 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    N. N. Novikova, S. I. Zheludeva, O. V. Konovalov, et al., J. Appl. Crystallogr. 36, 727 (2003).CrossRefGoogle Scholar
  25. 25.
    M. V. Koval’chuk, N. N. Novikova, and S. N. Yakunin, Priroda (Moscow, Russ. Fed.), No. 12, 3 (2012).Google Scholar
  26. 26.
    V. V. Lider, E. Yu. Tereshchenko, S. I. Zheludeva, et al., Poverkhnost, No. 7, 5 (2004).Google Scholar
  27. 27.
    M. V. Koval’chuk and V. O. Popov, Nauka Rossii, No. 3, 4 (2013).Google Scholar
  28. 28.
    M. V. Kovalchuk, A. Kazimirov, V. Kohn, et al., Phys. B 221, 445 (1996).ADSCrossRefGoogle Scholar
  29. 29.
    V. G. Kohn, Phys. Status Solidi A 106, 31 (1988).ADSCrossRefGoogle Scholar
  30. 30.
    V. G. Kohn and L. V. Samoilova, Phys. Status Solidi 133, 9 (1992).ADSCrossRefGoogle Scholar
  31. 31.
    A. E. Blagov, Yu. A. D’yakova, M. V. Koval’chuk, et al., Crystallogr. Rep. 61 (3), 1 (2016).CrossRefGoogle Scholar
  32. 32.
    M. A. Marchenkova, Yu. A. D’yakova, A. Yu. Seregin, et al., Poverkhnost, No. 11, 1 (2013).Google Scholar
  33. 33.
    A. Yu. Kazimirov, M. V. Kovalchuk, V. G. Kohn, et al., Phys. Status Solidi A 135, 507 (1993).ADSCrossRefGoogle Scholar
  34. 34.
    M. V. Koval’chuk and V. G. Kon, Usp. Fiz. Nauk 149 (1), 69 (1986).CrossRefGoogle Scholar
  35. 35.
    A. Yu. Kazimirov, M. V. Koval’chuk, and V. G. Kon, Kristallografiya 39, 258 (1994).Google Scholar
  36. 36.
    A. M. Afanas’ev, A. V. Zozulya, M. V. Koval’chuk, et al., JETP Lett. 75 (7), 309 (2002).ADSCrossRefGoogle Scholar
  37. 37.
    A. E. Blagov, M. V. Koval’chuk, V. G. Kon, et al., Crystallogr. Rep. 55 (1), 10 (2010).ADSCrossRefGoogle Scholar
  38. 38.
    A. E. Blagov, M. V. Koval’chuk, V. G. Kon, et al., Poverkhnost, No. 9, 12 (2011).Google Scholar
  39. 39.
    A. M. Afanas’ev and V. G. Kon, Zh. Eksp. Teor. Fiz. 74 (1), 300 (1978).Google Scholar
  40. 40.
    M. V. Koval’chuk, P. A. Prosekov, M. A. Marchenkova, et al., Crystallogr. Rep. 59 (5), 679 (2014).ADSCrossRefGoogle Scholar
  41. 41.
    Rigaku J. 23, 52 (2006).Google Scholar
  42. 42.
    Organic and Hybrid Nanomaterials: Trends and Prospects, Ed. by V. F. Razumov and M. V. Klyuev (Izd-vo Ivan. Gos. Univ., Ivanovo, 2013) [in Russian].Google Scholar
  43. 43.
    A. S. Alekseev, N. V. Tkachenko, A. V. Efimov, et al., Russ. J. Phys. Chem. A 84 (7), 1356 (2010).CrossRefGoogle Scholar
  44. 44.
    A. Efimov, P. Vainiotalo, N. V. Tkachenko, et al., J. Porphyrins Phthalocyanines 7 (9), 610 (2003).CrossRefGoogle Scholar
  45. 45.
    Yu. A. D’yakova, E. I. Suvorova, A. S. Orekhov, et al., Kristallografiya 56 (1), 157 (2011).ADSGoogle Scholar
  46. 46.
    Yu. A. D’yakova, E. I. Suvorova, A. S. Orekhov, et al., Crystallogr. Rep. 58 (6), 927 (2013).ADSCrossRefGoogle Scholar
  47. 47.
    Y. A. Dyakova, M. A. Marchenkova, A. Y. Seregin, et al., Mendeleev Commun. 26, 1 (2016).CrossRefGoogle Scholar
  48. 48.
    A. Yu. Seregin, Yu. A. D’yakova, S. N. Yakunin, et al., Crystallogr. Rep. 58 (6), 934 (2013).ADSCrossRefGoogle Scholar
  49. 49.
    M. A. Marchenkova, Y. A. Dyakova, E. Yu. Tereschenko, et al., Langmuir 31, 12426 (2015).CrossRefGoogle Scholar
  50. 50.
    M. Saint-Pierre-Chazalet, F. Billoudet, and M. P. Pileni, Colloid Polym. Sci. 79, 76 (1989).CrossRefGoogle Scholar
  51. 51.
    M. Saint-Pierre-Chazalet, C. Fressigné, F. Billoudet, et al., Thin Solid Films 210–211, 743 (1992).CrossRefGoogle Scholar
  52. 52.
    N. E. Chayen and E. Saridakis, Nat. Methods 5 (2), 147 (2008).CrossRefGoogle Scholar
  53. 53.
    E. Pechkova, R. Gebhardt, and C. Riekel, et al. Biophys. J. 99 (4), 1256 (2010).ADSCrossRefGoogle Scholar
  54. 54.
    A. McPherson and B. Cudney, Acta Crystallogr. F. 70 (11), 1445 (2014).CrossRefGoogle Scholar
  55. 55.
    D. Castagnolo, A. Vergara, L. Paduano, et al., Acta Crystallogr. D 58, 1633 (2002).CrossRefGoogle Scholar
  56. 56.
    J. Day and A. McPherson, Protein Sci. 1, 1254 (1992).CrossRefGoogle Scholar
  57. 57.
    P. W. G. Poodt, M. C. R. Heijna, A. Schouten, et al., Cryst. Growth Des. 9, 885 (2009).CrossRefGoogle Scholar
  58. 58.
    W. Littke and C. John, Eur. Space Agency [Spec. Publ.] SP 95, 185 (1984).Google Scholar
  59. 59.
    V. J. Fazio, T. S. Peat, and J. Newman, Acta Crystallogr. F 70, 1303 (2014).CrossRefGoogle Scholar
  60. 60.
    A. V. Svanidze, S. G. Lushnikov, and L. A. Shuvalov, Crystallogr. Rep. 50 (5), 789 (2005).ADSCrossRefGoogle Scholar
  61. 61.
    H. M. Volz and R. J. Matyi, Acta Crystallogr. D 56, 881 (2000).CrossRefGoogle Scholar
  62. 62.
    E. H. Snell, S. Weisgerber, J. R. Helliwell, et al., Acta Crystallogr. D 51, 1099 (1995).CrossRefGoogle Scholar
  63. 63.
    S. Chattopadhyay, D. Erdemir, J. M. B. Evans, et al., Cryst. Growth Des. 5, 523 (2005).CrossRefGoogle Scholar
  64. 64.
    A. S. Myerson, Faraday Discuss. 179, 543 (2015).CrossRefGoogle Scholar
  65. 65.
    M. Vorontsova, D. Maes, and P. G. Vekilov, Faraday Discuss. 179, 27 (2015).CrossRefGoogle Scholar
  66. 66.
    H. L. Cui, Y. Yu, W. C. Chen, et al., Chin. Chem. Lett. 17, 101 (2006).Google Scholar
  67. 67.
    F. Bonneté, N. Ferté, J. P. Astier, et al., J. Phys. IV 118, 3 (2004).Google Scholar
  68. 68.
    D. Vivarès and F. Bonneté, Acta Crystallogr. D 58, 472 (2002).CrossRefGoogle Scholar
  69. 69.
    F. Zhang, M. W. A. Skoda, R. M. J. Jacobs, et al., J. Phys. Chem. B 111, 251 (2007).CrossRefGoogle Scholar
  70. 70.
    M. L. Pusey, R. S. Snyder, and R. Naumann, J. Biol. Chem. 261, 6524 (1986).Google Scholar
  71. 71.
    M. Wiechmann, O. Enders, C. Zeilinger, et al., Ultramicroscopy 86, 159 (2001).CrossRefGoogle Scholar
  72. 72.
    F. Boue, F. Lefaucheux, M. C. Robert, et al., J. Cryst. Growth 133, 246 (1993).ADSCrossRefGoogle Scholar
  73. 73.
    M. V. Kovalchuk, A. E. Blagov, Yu. A. Dyakova, et al., Cryst. Growth Des. 6 (4), 1792 (2016).CrossRefGoogle Scholar
  74. 74.
    M. A. Marchenkova, V. V. Volkov, A. E. Blagov, et al., Crystallogr. Rep. 61 (1), 5 (2016).ADSCrossRefGoogle Scholar
  75. 75.
    D. I. Svergun and L. A. Feigin, X-Ray and Small-Angle Neutron Scattering (Nauka, Moscow, 1986) [in Russian].Google Scholar
  76. 76.
    P. V. Konarev, M. V. Petoukhov, V. V. Volkov, et al., J. Appl. Crystallogr. 39, 277 (2006).CrossRefGoogle Scholar
  77. 77.
    A. Ducruix, J. P. Guilloteau, and M. J. Ries-Kautt, Cryst. Growth 168, 28 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of SciencesMoscowRussia
  2. 2.National Research Centre “Kurchatov Institute,”MoscowRussia

Personalised recommendations