Advertisement

Crystallography Reports

, Volume 61, Issue 3, pp 493–498 | Cite as

Structure and physicochemical properties of thin film photosemiconductor cells based on porphine derivatives

  • A. V. Kazak
  • N. V. Usol’tseva
  • A. I. Smirnova
  • V. V. Bodnarchuk
  • S. N. Sul’yanov
  • S. V. Yablonskii
Surface and Thin Films

Abstract

Photosemiconductor thin films based on two organic porphine derivatives have been investigated. These compounds have different pendent groups; the film morphology, along with the specific fabrication technique, is determined to a great extent by these groups. The films have been fabricated by vacuum sputtering and using the Langmuir−Schaefer method. According to the atomic force microscopy (AFM) data, the Langmuir−Schaefer films are more homogeneous than the sputtered ones. It is shown that the sputtered films based on substituted porphine have a looser stacking than the initial analog. A spectroscopy study revealed a bathochromic shift of the Soret band in the Langmuir−Schaefer films–sputtered films series. This shift is explained by the increase in the concentration and size of molecular aggregates in sputtered films. It is shown that a polycrystalline C60 fullerene film deposited onto an amorphous substituted porphine layer improves the photoelectric characteristics of the latter. Both the time stability of the photodiode structure and its ampere‒watt sensitivity increase (by a factor of 10 in the transition regime). The steady-state current does not change. The effect of polarity reversal of the photovoltaic signal is observed in a planar С60‒substituted metalloporphine heterostructure, which is similar to the pyroelectric effect. The polarity reversal can be explained by the contribution of the trap charge and discharge current at the interface between the amorphous photosemiconductor and crystalline photosemiconductor to the resulting photoelectric current.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Mishra, M. K. R. Fischer, and P. Baurle, Angew. Chem. Int. Ed. 48, 2474 (2009).CrossRefGoogle Scholar
  2. 2.
    S. Mathew, A. Yella, P. Gao, et al., Nature Chem. Advance Online Publication (2009) (www.nature.com/naturechemistry).Google Scholar
  3. 3.
    K. Cnops, B. P. Rand, D. Cheyns, et al., Nature Commun. 5, 3406 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    L. R. Milgrom, The Colors of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds (Oxford Univ. Press, New York, 1997).Google Scholar
  5. 5.
    N. S. Lewis and G. Crabtree, Basic Research Needs for Solar Energy Utilization (US Department of Energy, 2005).Google Scholar
  6. 6.
    B. Kippelen and J. L. Bredas, Energy Environ. Sci. 2, 251 (2009).CrossRefGoogle Scholar
  7. 7.
    D. M. Guldi, B. Nuber, P. J. Bracher, et al., J. Phys. Chem. A 107, 3215 (2003).CrossRefGoogle Scholar
  8. 8.
    L. Sanchez, M. Sierra, N. Martin, et al., Angew. Chem. Int. Ed. 45, 4637 (2006).CrossRefGoogle Scholar
  9. 9.
    T. Hasobe, H. Imahori, S. Fukuzumi, et al., J. Phys. Chem. B 107, 12105 (2003).CrossRefGoogle Scholar
  10. 10.
    M. Isosomppi, N. V. Tkachenko, A. Efimov, et al., J. Mater. Chem. 15, 4546 (2005).CrossRefGoogle Scholar
  11. 11.
    L. M. Blinov, Usp. Fiz. Nauk 155 (3), 443 (1988).MathSciNetCrossRefGoogle Scholar
  12. 12.
    V. V. Bykova, N. V. Usol’tseva, A. S. Semeikin, et al., Zhidk. Krist. Ikh Prakt. Ispol’z., No. 2, 28 (2008).Google Scholar
  13. 13.
    L. M. Blinov, Usp. Khim. 52 (8), 1263 (1983).CrossRefGoogle Scholar
  14. 14.
    A. V. Kazak, N. V. Usol’tseva, S. G. Yudin, et al., Zhidk. Krist. Ikh Prakt. Ispol’z., No. 3, 47 (2011).Google Scholar
  15. 15.
    A. V. Kazak, N. V. Usol’tseva, S. G. Yudin, et al., Langmuir 28, 16951 (2012).CrossRefGoogle Scholar
  16. 16.
    A. V. Kazak, N. V. Usol’tseva, A. I. Smirnova, et al., Proc. 24th Int. Crimean Conf. “Microwave Technique and Telecommunication Technologies” (KryMiKo’2014), Sept. 7–13, 2014, p. 761.Google Scholar
  17. 17.
    X. Song, M. Miura, X. Xu, et al., Langmuir 12, 2019 (1996).CrossRefGoogle Scholar
  18. 18.
    A. V. Kazak, N. V. Usol’tseva, S. G. Yudin, et al., Zhidk. Krist. Ikh Prakt. Ispol’z., No. 2, 52 (2011).Google Scholar
  19. 19.
    A. V. Kazak and N. V. Usol’tseva, The Supramolecular Organization of Discotic Mesogens (Lambert Academic Publishing, Saarbrücken, 2012).Google Scholar
  20. 20.
    S. V. Yablonskii, S. G. Yudin, V. V. Bodnarchuk, et al., Zhidk. Krist. Ikh Prakt. Ispol’z., No. 4, 34 (2013).Google Scholar
  21. 21.
    C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).ADSCrossRefGoogle Scholar
  22. 22.
    P. A. Bogomolov, V. I. Sidorov, and I. F. Usol’tsev, Receivers for IR Systems (Radio i Svyaz’, Moscow, 1987) [in Russian].Google Scholar
  23. 23.
    I. S. Neretin and Yu. L. Slovokhotov, Russ. Chem. Rev. 73, 455 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    S. V. Yablonskii, V. V. Bodnarchuk, and S. N. Sul’yanov, Proc Int. Conf. “Physical Properties of Materials and Dispersed Media for Elements of Information Systems, Nanoelectronic Devices, and Ecological Technologies”, Moscow, MGOU, April 21–24, 2015, p. 91.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • A. V. Kazak
    • 1
  • N. V. Usol’tseva
    • 1
  • A. I. Smirnova
    • 1
  • V. V. Bodnarchuk
    • 2
  • S. N. Sul’yanov
    • 2
  • S. V. Yablonskii
    • 2
  1. 1.Nanomaterials Research InstituteIvanovo State UniversityIvanovoRussia
  2. 2.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia

Personalised recommendations