Advertisement

Crystallography Reports

, Volume 61, Issue 3, pp 362–370 | Cite as

X-ray diffraction and X-ray standing-wave study of the lead stearate film structure

  • A. E. Blagov
  • Yu. A. Dyakova
  • M. V. Kovalchuk
  • V. G. Kohn
  • M. A. Marchenkova
  • Yu. V. Pisarevskiy
  • P. A. Prosekov
Diffraction and Scattering of Ionizing Radiations

Abstract

A new approach to the study of the structural quality of crystals is proposed. It is based on the use of X-ray standing-wave method without measuring secondary processes and considers the multiwave interaction of diffraction reflections corresponding to different harmonics of the same crystallographic reflection. A theory of multiwave X-ray diffraction is developed to calculate the rocking curves in the X-ray diffraction scheme under consideration for a long-period quasi-one-dimensional crystal. This phase-sensitive method is used to study the structure of a multilayer lead stearate film on a silicon substrate. Some specific structural features are revealed for the surface layer of the thin film, which are most likely due to the tilt of the upper layer molecules with respect to the external normal to the film surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. G. Kohn, Phys. Status Solidi A 106 (1), 31 (1988).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    V. G. Kohn, J. Moscow Phys. Soc. 1 (4), 425 (1991).MathSciNetGoogle Scholar
  3. 3.
    V. G. Kohn and L. V. Samoilova, Phys. Status Solidi A 133 (1) (1992).Google Scholar
  4. 4.
    A. Yu. Kazimirov, M. V. Koval’chuk, and V. G. Kohn, Kristallografiya 39 (2), 258 (1994).Google Scholar
  5. 5.
    M. A. Marchenkova, Yu. A. D’yakova, A. Yu. Seregin, et al., Poverkhnost, No. 11, 1 (2013).Google Scholar
  6. 6.
    V. Holy, U. Pietsch, and T. Baumbach, High-Resolution X-Ray Scattering from Thin Films and Multilayers. Springer Tracts in Modern Physics (Springer, Berlin, 1999), Vol. 149, Pt. I, p. 31.Google Scholar
  7. 7.
    M. V. Kovalchuk, A. Kazimirov, V. Kohn, et al., Phys. B: Condens. Matter 221, 445 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    A. Yu. Kazimirov, M. V. Kovalchuk, I. Yu. Kharitonov, et al., Rev. Sci. Instrum. 63, 1019 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    A. M. Afanas’ev and V. G. Kohn, Zh. Eksp. Teor. Fiz. 74 (1), 300 (1978).Google Scholar
  10. 10.
    M. V. Koval’chuk and V. G. Kohn, Usp. Fiz. Nauk 149 (1), 69 (1986).CrossRefGoogle Scholar
  11. 11.
    D. E. Savage, J. Kleiner, N. Schimke, et al., J. Appl. Phys. 69 (3), 1411 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    V. Nitz, M. Tolan, J.-P. Schlomka, et al., Phys. Rev. B 54 (7), 5038 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    V. M. Kaganer, S. A. Stepanov, and R. Kohler, Phys. Rev. B 52 (23), 16369 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    Z. G. Pinsker, X-ray Crystal Optics (Nauka, Moscow, 1982) [in Russian].Google Scholar
  15. 15.
    V. G. Kohn, Phys. Status Solidi B 231 (1), 132 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    V. V. Klechkovskaya and L. A. Feigin, Kristallografiya 43 (6), 975 (1998).Google Scholar
  17. 17.
    J. B. Peng, G. T. Barnes, and I. R. Gentle, Adv. Colloid Interface Sci. 91, 163 (2001).CrossRefGoogle Scholar
  18. 18.
    V. G. Kohn, Crystallogr. Rep. 51 (6), 936 (2006).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • A. E. Blagov
    • 1
    • 2
  • Yu. A. Dyakova
    • 1
    • 2
  • M. V. Kovalchuk
    • 1
    • 2
  • V. G. Kohn
    • 1
    • 2
  • M. A. Marchenkova
    • 1
    • 2
  • Yu. V. Pisarevskiy
    • 1
    • 2
  • P. A. Prosekov
    • 1
    • 2
  1. 1.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  2. 2.National Research Centre “Kurchatov Institute”MoscowRussia

Personalised recommendations