Skip to main content

Sapphire evolution of the vicinal (0001) sapphire surface upon annealing in air

Abstract

The evolution of a terrace-step nanostructure (TSN) on the sapphire (0001) surface misoriented by an angle of 0.1° with respect to the (\(10\bar 10\)) plane was observed by atomic force microscopy (AFM) at temperatures from 1273 to 1673 K. It was established that, with an increase in the annealing temperature to 1373 K, the step height attains 0.44 nm at a distance of 220 nm between steps; i.e., heating by 100 K doubles these parameters. In this case, the relief periodicity is retained. Rapid cooling of the substrate to 973 K leads to partial freezing of the surface structure, which makes it possible to observe the transition from one TSN to another. It was established that two steps coalescence upon annealing to 1373 K toward the (\(10\bar 10\)) plane, which has the lowest rigidity and, consequently, the lowest atomic density. The coalescence of two steps at a specified temperature is completed at a sufficiently large distance between the steps, at which their interaction energy is negligible. Upon further annealing of the samples above 1373 K, the steps overgrow to 1 nm; however, their periodicity is broken in this case.

This is a preview of subscription content, access via your institution.

References

  1. F. Cuccureddu, S. Murphy, I. Shvets, et al., Surf. Sci. 604, 1294 (2010).

    Article  ADS  Google Scholar 

  2. A. V. Butashin, V. P. Vlasov, V. M. Kanevskii, et al., Crystallogr. Rep. 57 (6), 824 (2012).

    Article  ADS  Google Scholar 

  3. V. P. Vlasov, A. V. Butashin, V. M. Kanevskii, et al., Crystallogr. Rep. 59 (3), 422 (2014).

    Article  ADS  Google Scholar 

  4. A. A. Chernov, Modern Crystallography, Vol. 3: Crystal Growth, Ed. by B. K. Vainshtein, A. A. Chernov, and L. A. Shuvalov (Nauka, Moscow, 1980) [in Russian], p. 7.

  5. Ya. E. Geguzin and N. N. Ovcharenko, Usp. Fiz. Nauk 76 (2), 283 (1962).

    Article  Google Scholar 

  6. E. E. Gruber and W. W. Mullins, J. Phys. Chem. Solids 28, 875 (1967).

    Article  ADS  Google Scholar 

  7. Ya. E. Geguzin and Yu. S. Kaganovskii, Diffusion Processes on Crystal Surface (Energoatomizdat, Moscow, 1984) [in Russian], p. 124.

    Google Scholar 

  8. H. C. Jeong and E. D. Williams, Surf. Sci. Rep. 34, 171 (1999).

    Article  ADS  Google Scholar 

  9. O. Kurnosikov, L. Pham Van, and J. Cousty, Surf. Sci. 459, 256 (2000).

    Article  ADS  Google Scholar 

  10. L. Pham Van, O. Kurnosikov, and J. Cousty, Surf. Sci. 411, 263 (1998).

    Article  ADS  Google Scholar 

  11. W. W. Mullins, J. Appl. Phys. 30, 77 (1959).

    Article  ADS  Google Scholar 

  12. V. E. Asadchikov, A. V. Butashin, Yu. O. Volkov, et al., Zavod. Lab., No. 10, 21 (2003).

    Google Scholar 

  13. Yu. Shiratsuchi, M. Yamamoto, and Y. Kamada, Jpn. J. Appl. Phys. 41, 5719 (2002).

    Article  ADS  Google Scholar 

  14. J. Wang, A. Howard, R. G. Erdell, et al., Surf. Sci. 515, 337 (2002).

    Article  ADS  Google Scholar 

  15. E. D. Williams, Surf. Sci. 299, 502 (1994).

    Article  ADS  Google Scholar 

  16. H.-C. Jeong and E. D. Williams, Surf. Sci. Rep. 34, 171 (1999).

    Article  ADS  Google Scholar 

  17. V. E. Asadchikov, A. V. Butashin, Yu. O. Volkov, et al., Kristallografiya 56 (3), 515 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Vlasov.

Additional information

Original Russian Text © V.P. Vlasov, A.E. Muslimov, A.V. Butashin, V.M. Kanevsky, 2016, published in Kristallografiya, 2016, Vol. 61, No. 1, pp. 65–69.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vlasov, V.P., Muslimov, A.E., Butashin, A.V. et al. Sapphire evolution of the vicinal (0001) sapphire surface upon annealing in air. Crystallogr. Rep. 61, 58–62 (2016). https://doi.org/10.1134/S1063774516010272

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774516010272

Keywords

  • Atomic Force Microscopy
  • Sapphire
  • Power Spectral Density
  • Atomic Force Microscopy Image
  • Crystallography Report