Skip to main content

Effect of surfactant excess on the stability of low-polarity ferrofluids probed by small-angle neutron scattering

Abstract

The structures of ferrofluids (FFs) based on nonpolar solvent decahydronaphthalene, stabilized by saturated monocarboxylic acids with hydrocarbon chains of different lengths, C16 (palmitic acid) and ?12 (lauric acid), with an excess of acid molecules, have been studied by small-angle neutron scattering. It is found that the addition of acid to an initially stable system with optimal composition leads to more significant structural changes (related to aggregation) than those observed previously for this class of FFs. A comparison of the influence of monocarboxylic acids on the stability of nonpolar FFs suggests that the enhancement of aggregation is much more pronounced in the case of palmitic acid excess. This fact confirms the conclusion of previous studies, according to which an increase in the hydrocarbon chain length in a saturated acid reduces the efficiency of the corresponding FF stabilization.

This is a preview of subscription content, access via your institution.

References

  1. B. Berkovski, Magnetic Fluids and Applications Handbook (Beggel House, New York, 1996).

    Google Scholar 

  2. L. Vekas, M. V. Avdeev, and D. Bica, Magnetic Nanofluids: Synthesis and Structure in Nanoscience in Biomedicine, Ed. by D. Shi (Springer, Berlin, 2009), Ch. 25, p. 650.

  3. U. Häfeli and M. Zborowski, J. Magn. Magn. Mater. 321, 1335 (2009).

    Article  Google Scholar 

  4. R. E. Rosensweig, Ferrohydrodynamics (Cambridge Univ. Press, Cambridge, 1985).

    Google Scholar 

  5. V. I. Petrenko, M. V. Avdeev, V. L. Aksenov, et al., J. Surf. Invest. X-ray, Synchr. and Neutron Techniques 3 (1), 161 (2009).

    Article  Google Scholar 

  6. D. Bica, Roman. Rep. Phys. 47, 265 (1995).

    Google Scholar 

  7. P. Izquierdo, J. Esquena, Th. F. Tadros, et al., Langmuir 18, 26 (2002).

    Article  Google Scholar 

  8. A. B. Jódar-Reyes, A. Martín-Rodríguez, and J. L. Ortega-Vinuesa, J. Colloid. Interface Sci. 298, 248 (2006).

    Article  Google Scholar 

  9. V. L. Alexeev, J. Colloid. Interface Sci. 206, 416 (1998).

    Article  Google Scholar 

  10. J. Bibette, D. Roux, and B. Pouligny, J. Phys. II France 2, 401 (1992).

    Article  Google Scholar 

  11. V. I. Petrenko, M. V. Avdeev, V. L. Aksenov, et al., Solid State Phenom. 152–153, 198 (2009).

    Article  Google Scholar 

  12. A. V. Nagornyi, V. I. Petrenko, L. A. Bulavin, et al., Phys. Solid State 56 (1), 91 (2014).

    Article  ADS  Google Scholar 

  13. L. A. Bulavin, A. V. Nagornyi, V. I. Petrenko, et al., Ukr. J. Phys. 58 (12), 1143 (2013).

    Article  Google Scholar 

  14. V. I. Petrenko, M. V. Avdeev, L. Almásy, et al., Colloid. Surf. A 337, 91 (2009).

    Article  Google Scholar 

  15. M. V. Avdeev, D. Bica, L. Vekas, et al., J. Colloid. Inter. Sci. 334, 37 (2009).

    Article  Google Scholar 

  16. M. V. Avdeev and V. L. Aksenov, Phys. Usp. 53, 971 (2010).

    Article  ADS  Google Scholar 

  17. V. L. Aksenov, M. V. Avdeev, A. V. Shulenina, et al., Crystallogr. Rep. 56 (5), 792 (2011).

    Article  ADS  Google Scholar 

  18. J. Wagner, J. Appl. Crystallogr. 37, 750 (2004).

    Article  Google Scholar 

  19. M. Kammel, A. Hoell, and A. Wiedenmann, Scr. Mater. 44, 2341 (2001).

    Article  Google Scholar 

  20. A. Hoell, M. Kammel, A. Heinemann, and A. Wiedenmann, J. Appl. Crystallogr. 36, 558 (2003).

    Article  Google Scholar 

  21. A. Hoell, R. Muller, A. Wiedenmann, and W. Gawalek, J. Magn. Magn. Mater. 252, 92 (2002).

    Article  ADS  Google Scholar 

  22. A. V. Nagornyi, V. I. Petrenko, M. V. Avdeev, et al., J. Surf. Invest. X-ray, Synchr. and Neutron Techniques 7 (1), 99 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Petrenko.

Additional information

Original Russian Text © V.I. Petrenko, M.V. Avdeev, L.A. Bulavin, L. Almasy, N.A. Grigoryeva, V.L. Aksenov, 2016, published in Kristallografiya, 2016, Vol. 61, No. 1, pp. 132–137.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petrenko, V.I., Avdeev, M.V., Bulavin, L.A. et al. Effect of surfactant excess on the stability of low-polarity ferrofluids probed by small-angle neutron scattering. Crystallogr. Rep. 61, 121–125 (2016). https://doi.org/10.1134/S1063774516010168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774516010168

Keywords

  • Surfactant
  • Magnetite
  • Palmitic Acid
  • Magnetic Nanoparticles
  • Crystallography Report