Crystallography Reports

, Volume 61, Issue 1, pp 66–76 | Cite as

Porosity and structural parameters of Karelian shungites according to the data of small-angle synchrotron radiation scattering and microscopy

  • Ye. A. GolubevEmail author
  • V. V. Ulyashev
  • A. A. Veligzhanin
Nanomaterials and Ceramics


The nanoporosity and structure of natural carbons has been investigated on the example of Karelian carbon-rich shungites by comparing the data of small-angle synchrotron radiation scattering and highresolution microscopy. The analysis of small-angle scattering data is based on the model of scattering spheres with lognormal size distribution. It is found that the structure of samples from the Maksovo and Zazhogino deposits subjected to high temperatures in the geological medium and (also to a lesser extent) a sample from the Shunga deposit can be described as an aggregation of polydisperse scattering spheres with lognormal size distribution; the characteristic scatterer size is determined for them. A comparison with microscopy data shows that these scatterers are mainly associated with pores, and the character of their size distribution is similar to that previously established for nanoglobules in schungites.


Scanning Tunnel Microscopy Crystallography Report Graphene Layer Atomic Force Microscopy Data Lognormal Size Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. M. Filippov, Shungite-Bearing Rocks of the Onega Structure (Izd-vo Karel’skogo NTs RAN, Petrozavodsk, 2002) [in Russian].Google Scholar
  2. 2.
    N. N. Rozhkova, Perspectives of Fullerene Nanotechnology, Ed. by E. Osawa (Kluwer, Dordrecht, 2002), p. 237.Google Scholar
  3. 3.
    A. Z. Zaidenberg, V. V. Kovalevskii, N. N. Rozhkova, and A. G. Tupolev, Zh. Fiz. Khim., No. 1, 107 (1996).Google Scholar
  4. 4.
    V. V. Kovalevski, P. R. Buseck, and J. M. Cowley, Carbon 39, 243 (2001).CrossRefGoogle Scholar
  5. 5.
    V. V. Kovalevskii, Doctoral Dissertation in Geology and Mineralogy (Petrozavodsk, 2007).Google Scholar
  6. 6.
    N. P. Yushkin, Dokl. Akad. Nauk 337, 800 (1994).Google Scholar
  7. 7.
    Ye. A. Golubev, O. V. Kovaleva, and N. P. Yushkin, Fuel. 87, 32 (2008).CrossRefGoogle Scholar
  8. 8.
    K. Usenbaev, K. Zhumalieva, R. M. Ryskulbekova, and Yu. K. Kalinin, Dokl. Akad. Nauk SSSR, 232, 1189 (1977).Google Scholar
  9. 9.
    V. V. Kovalevskii, Zh. Strukt. Khim. 39 (1), 31 (1994).Google Scholar
  10. 10.
    L. A. Aleshina, I. O. Kuz’mina, A. D. Fofanov, and O. N. Shivrin, Condensed Noncrystalline State of Earth’s Crust Matter, Ed. by N. P. Yushkin (Nauka, St. Petersburg, 1995) [in Russian], p. 104.Google Scholar
  11. 11.
    N. N. Rozhkova, E. A. Golubev, V. I. Siklitskii, and M. V. Baidakova, Fullerenes and Fullerene-Like Structures, Ed. by P. A. Vityaz’ (Izd-vo NAN Belarusi, Minsk, 2005) [in Russian], p. 100.Google Scholar
  12. 12.
    M. V. Avdeev, T. V. Tropin, V. L. Aksenov, et al., Carbon 44, 954 (2006).CrossRefGoogle Scholar
  13. 13.
    D. I. Svergun, E. V. Shtykova, V. V. Volkov, and L. A. Feigin, Crystallogr. Rep. 56 (5), 725 (2011).CrossRefADSGoogle Scholar
  14. 14.
    V. V. Volkov, V. V. Klechkovskaya, E. V. Shtykova, et al., Crystallogr. Rep. 54 (2), 169 (2009).CrossRefADSGoogle Scholar
  15. 15.
    T. A. Babushkina, T. P. Klimova, E. V. Shtykova, et al., Crystallogr. Rep. 55 (2), 312 (2010).CrossRefADSGoogle Scholar
  16. 16.
    B. N. Wang, R. D. Bennett, E. Verploegen, et al., J. Phys. Chem. 111, 5859 (2007).Google Scholar
  17. 17.
    E. Smorgonskaya, R. Kyutt, A. Danishevskii, et al., J. Non-Cryst. Solids 299–302, 810 (2002).CrossRefGoogle Scholar
  18. 18.
    O. O. Mykhaylyk, Yu. M. Solonin, D. N. Batchelder, and R. Brydson, J. Appl. Phys. 97, 074302 (2005).CrossRefADSGoogle Scholar
  19. 19.
    R. Diduszko, A. Swiatkowskib, and B. J. Trznadel, Carbon 38, 1153 (2000).CrossRefGoogle Scholar
  20. 20.
    P. R. Buseck, L. P. Galdobina, V. V. Kovalevski, et al., Can. Mineral. 35, 1363 (1997).Google Scholar
  21. 21.
    V. N. Korneev, P. M. Sergienko, A. M. Matyushin, et al., Nucl. Instrum. Methods Phys. Res. A 543, 368 (2005).CrossRefADSGoogle Scholar
  22. 22.
    T. Huang, H. Toraya, T. Blanton, and Y. Wu, J. Appl. Crystallogr. 3, 180 (1993).CrossRefGoogle Scholar
  23. 23.
    H. Li, E. L. Allen, and M. F. Toney, SAXSFit: A Program for Fitting Small-Angle X-Ray and Neutron Scattering Data / arXiv: 0901.4782v1 (2008), p. 1.Google Scholar
  24. 24.
    D. I. Svergun and L. A. Feigin, X-Ray and Small-Angle Neutron Scattering (Nauka, Moscow, 1986) [in Russian].Google Scholar
  25. 25.
    N. N. Rozhkova, L. E. Gorlenko, G. I. Emel’yanova, et al., Pure Appl. Chem. 81 (11), 2093 (2009).CrossRefGoogle Scholar
  26. 26.
    N. N. Rozhkova, G. I. Emel’yanova, L. E. Gorlenko, et al., Fiz. Khim. Stekla 37 (6), 853 (2011).Google Scholar
  27. 27.
    A. V. Semenyuk and D. I. Svergun, J. Appl. Crystallogr. 24, 537 (1991).CrossRefGoogle Scholar
  28. 28.
    O. Glatter and O. Kratky, Small-Angle X-Ray Scattering (Academic, London, 1982).Google Scholar
  29. 29.
    T. N. Vasilevskaya and T. V. Antropova, Fiz. Tverd. Tela 51, 2386 (2009).Google Scholar
  30. 30.
    E. A. Golubev, Supramolecular Structures of Natural X-Ray Amorphous Materials (Izd-vo UrO RAN, Yekaterinburg, 2006) [in Russian].Google Scholar
  31. 31.
    Shungites As a New Carbonaceous Raw Material, Ed. by Yu. A. Sokolov (Kareliya, Petrozavodsk, 1984) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • Ye. A. Golubev
    • 1
    Email author
  • V. V. Ulyashev
    • 1
  • A. A. Veligzhanin
    • 2
  1. 1.Institute of Geology, Komi Science Center, Ural BranchRussian Academy of SciencesSyktyvkarRussia
  2. 2.National Research Centre “Kurchatov Institute”MoscowRussia

Personalised recommendations