Crystallography Reports

, Volume 60, Issue 6, pp 884–888 | Cite as

Analysis of molecular oxygen exit pathways in cyanobacterial photosystem II: Molecular dynamics studies

  • A. G. Gabdulkhakov
  • V. G. Kljashtorny
  • M. V. Dontsova
Structure of Macromolecular Compounds

Abstract

In thylakoids of cyanobacteria and other photosynthetic organisms, the light-induced production of molecular oxygen is catalyzed by the giant lipid-pigment-protein complex called photosystem II (PSII). The oxygen-evolving complex is buried deep in the lumenal part of PSII, and dioxygen molecules need to pass through the protein environment in order to leave the active site of the enzyme free. Previous studies aimed at finding oxygen channels in PSII were based on either an analysis of the cavities within is static structure or experiments on the insertion of noble gas molecules into PSII crystals under elevated pressure. In these studies, some possible exit pathways for the molecules were found and the static positions of molecular oxygen were determined. In the present work, the oxygen movement in the transport system of PSII is simulated by molecular dynamics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Renger and T. Renger, Photosynth. Res. 98, 53 (2008).CrossRefGoogle Scholar
  2. 2.
    A. Guskov, A. Gabdulkhakov, M. Broser, et al., Chem. Phys. Chem. 11, 1160 (2010).Google Scholar
  3. 3.
    A. G. Gabdulkhakov and M. V. Dontsova, Usp. Biol. Khim. 53, 323 (2013).Google Scholar
  4. 4.
    B. Kok, B. Forbush, and M. McGloin, Photochem. Photobiol. 11, 457 (1970).CrossRefGoogle Scholar
  5. 5.
    J. Kern and G. Renger, Photosynth. Res. 94, 183 (2007).CrossRefGoogle Scholar
  6. 6.
    Y. Umena, K. Kawakami, J.-R. Shen, et al., Nature 473, 55 (2011).CrossRefADSGoogle Scholar
  7. 7.
    M. Broser, A. Gabdulkhakov, J. Kern, et al., J. Biol. Chem. 285, 26255 (2010).CrossRefGoogle Scholar
  8. 8.
    A. Guskov, J. Kern, A. Gabdulkhakov, et al., Nat. Struct. Mol. Biol. 16, 334 (2009).CrossRefGoogle Scholar
  9. 9.
    P. Pospísil, Biochim. Biophys. Acta 1787, 1151 (2009).CrossRefGoogle Scholar
  10. 10.
    V. Klimov, G. Ananyev, O. Zastryzhnaya, et al., Photosynth. Res. 38, 409 (1993).CrossRefGoogle Scholar
  11. 11.
    D. A. Force, D. W. Randall, G. A. Lorigan, et al., J. Am. Chem. Soc. 120, 13321 (1998).CrossRefGoogle Scholar
  12. 12.
    J. M. Anderson and W. S. Chow, Philos. Trans. R. Soc. London B: Biol. Sci. 357, 1421 (2002).CrossRefGoogle Scholar
  13. 13.
    C. A. Wraight, Biochim. Biophys. Acta, Bioenerg. 1757, 886 (2006).CrossRefGoogle Scholar
  14. 14.
    A. Zouni, H. T. Witt, J. Kern, et al., Nature 409, 739 (2001).CrossRefADSGoogle Scholar
  15. 15.
    A. W. Rutherford and P. Faller, Trends Biochem. Sci. 26, 341 (2001).CrossRefGoogle Scholar
  16. 16.
    A. K. Williamson, Photosynth. Res. 98, 365 (2008).CrossRefGoogle Scholar
  17. 17.
    K. N. Ferreira, T. M. Iverson, K. Maghlaoui, et al., Science 303, 1831 (2004).CrossRefADSGoogle Scholar
  18. 18.
    M. Petrek, M. Otyepka, P. Banás, et al., BMC Bioinformatics 7, 316 (2006).CrossRefGoogle Scholar
  19. 19.
    J. W. Murray and J. Barber, J. Struct. Biol. 159, 228 (2007).CrossRefGoogle Scholar
  20. 20.
    F. M. Ho and S. Styring, Biochim. Biophys. Acta, Bioenerg. 1777, 140 (2008).CrossRefGoogle Scholar
  21. 21.
    A. Gabdulkhakov, A. Guskov, M. Broser, et al., Structure 17, 1223 (2009).CrossRefGoogle Scholar
  22. 22.
    J. Cohen, K. Kim, P. King, et al., Structure 13, 1321 (2005).CrossRefGoogle Scholar
  23. 23.
    S. Vassiliev, P. Comte, A. Mahboob, et al., Biochemistry 49, 1873 (2010).CrossRefGoogle Scholar
  24. 24.
    S. Vassiliev, T. Zaraiskaya, and D. Bruce, Biochim. Biophys. Acta, Bioenerg. 1817, 1671 (2012).CrossRefGoogle Scholar
  25. 25.
    K. Ogata, T. Yuki, M. Hatakeyama, et al., J. Am. Chem. Soc. 135, 15670 (2013).CrossRefGoogle Scholar
  26. 26.
    A. G. Gabdulkhakov, V. G. Klyashtornyi, and M. V. Dontsova, Crystallogr. Rep. 60 (1), 83 (2015).CrossRefADSGoogle Scholar
  27. 27.
    T. Zaraiskaya, S. Vassiliev, and D. Bruce, J. Comput. Sci. 5, 549 (2014).CrossRefGoogle Scholar
  28. 28.
    B. Hess, C. Kutzner, D. van der Spoel, et al., J. Chem. Theory Comput. 4, 435 (2008).CrossRefGoogle Scholar
  29. 29.
    A. D. MacKerell, D. Bashford, M. Bellott, et al., J. Phys. Chem. B 102, 3586 (1998).CrossRefGoogle Scholar
  30. 30.
    A. D. Mackerell, M. Feig, and C. L. Brooks, J. Comput. Chem. 25, 1400 (2004).CrossRefGoogle Scholar
  31. 31.
    B. Hess, H. Bekker, H. J. C. Berendsen, et al., J. Comput. Chem. 18, 1463 (1997).CrossRefGoogle Scholar
  32. 32.
    T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).CrossRefADSGoogle Scholar
  33. 33.
    U. Essmann, L. Perera, M. L. Berkowitz, et al., J. Chem. Phys. 103, 8577 (1995).CrossRefADSGoogle Scholar
  34. 34.
    H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, et al., J. Chem. Phys. 81, 3684 (1984).CrossRefADSGoogle Scholar
  35. 35.
    R. A. Laskowski, D. S. Moss, and J. M. Thornton, J. Mol. Biol. 231, 1049 (1993).CrossRefGoogle Scholar
  36. 36.
    V. G. Klyashtornyi, T. Yu. Fufina, L. G. Vasil’eva, et al., Crystallogr. Rep. 59 (4), 536 (2014).CrossRefADSGoogle Scholar
  37. 37.
    A. V. Lyashenko, I. Bento, V. N. Zaitsev, et al., J. Biol. Inorg. Chem. 11, 963 (2006).CrossRefGoogle Scholar
  38. 38.
    L. I. Trubitsina, S. V. Tishchenko, A. G. Gabdulkhakov, et al., Biochimie 112, 151 (2015).CrossRefGoogle Scholar
  39. 39.
    M. Suga, F. Akita, K. Hirata, et al., Nature 517, 99 (2015).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • A. G. Gabdulkhakov
    • 1
  • V. G. Kljashtorny
    • 1
  • M. V. Dontsova
    • 1
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchinoRussia

Personalised recommendations