Crystallography Reports

, Volume 60, Issue 4, pp 570–577 | Cite as

Size control and structure features of spherical calcium carbonate particles

  • D. B. Trushina
  • S. N. Sulyanov
  • T. V. Bukreeva
  • M. V. Kovalchuk
Nanomaterials, Ceramics

Abstract

The size of porous spherical calcium carbonate particles obtained by precipitation from a supersaturated solution has been controlled using bovine serum albumin as an organic additive and ethylene glycol and glycerol as cosolvents of the reaction mixture. The structural aspects of the formation of these particles, which affect the possibility of controlling their sizes, are considered. Highly porous vaterite particles with an average size of about 500 nm have been obtained by adding ethylene glycol and glycerol to the reaction mixture and agitation for no less than 30 min. It is shown that particles are formed as a result of the attachment of vaterite nanocrystallites, the shape of which is anisotropic and can be described by a biaxial ellipsoid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Devenney, M. Fernandez, and S. O. Morgan, Application for patent WO No. 2013165600 (2013).Google Scholar
  2. 2.
    W. J. Wilson and A. L. Porter, Patent US No. 6132696 (2000).Google Scholar
  3. 3.
    D. B. Trushina, T. V. Bukreeva, M. V. Kovalchuk, et al., Mater. Sci. Eng. C 45, 644 (2014).CrossRefGoogle Scholar
  4. 4.
    M. Ma and R. Sun, Advanced Biomimetics (Rijeka: InTech, 2011), p. 372.Google Scholar
  5. 5.
    J. Nakamura, G. Poologasundarampillai, J. R. Jones, et al., J. Mater. Chem. 1 (35), 4446 2013.CrossRefGoogle Scholar
  6. 6.
    H. Ohgushi, M. Okumura, T. Yoshikawa, et al., J. Biomed. Mater. Res. 26 (7), 885 1992.CrossRefGoogle Scholar
  7. 7.
    Y. Ueno, H. Futagawa, Y. Takagi, et al., J. Controlled Release 103 (1), 93 2005.CrossRefGoogle Scholar
  8. 8.
    W. Wei, G.-H. Ma, G. Hu, et al., J. Am. Chem. Soc. 130 (47), 15808 (2008).CrossRefGoogle Scholar
  9. 9.
    N. Qiu, H. Yin, B. Ji, et al., Mater. Sci. Eng. C 32 (8), 2634 2012.CrossRefGoogle Scholar
  10. 10.
    D. V. Volodkin, N. I. Larionova, and G. B. Sukhorukov, Biomacromolecules 5 (5), 1962 2004.CrossRefGoogle Scholar
  11. 11.
    A. I. Petrov, D. V. Volodkin, and G. B. Sukhorukov, Biotechnol. Prog. 21 (3), 918 2005.CrossRefGoogle Scholar
  12. 12.
    D. V. Volodkin, A. I. Petrov, M. Prevot, et al., Langmuir 20 (8), 3398 2004.CrossRefGoogle Scholar
  13. 13.
    A. A. Antipov, D. Shchukin, Y. Fedutik, et al., Colloids Surf. A 224 (1—3), 175 (2003).CrossRefGoogle Scholar
  14. 14.
    H. Cölfen and L. Qi, Chemistry (Easton). 7 (1), 106 2001.Google Scholar
  15. 15.
    T. V. Bukreeva, I. V. Marchenko, T. N. Borodina, et al., Dokl. Akad. Nauk 440 (2), 191 2011.Google Scholar
  16. 16.
    T. F. Hatch, Bacteriol Rev. 25 (3), 237 1961.MathSciNetGoogle Scholar
  17. 17.
    C.-L. Yao, W.-H. Xu, A.-M. Ding, et al., J. Chem. Sci. 121 (1), 89 2009.CrossRefGoogle Scholar
  18. 18.
    F. Manoli and E. Dalas, J. Cryst. Growth 218 (2—4), 359 (2000).ADSCrossRefGoogle Scholar
  19. 19.
    X. Wang, C. Wu, K. Tao, et al., J. Phys. Chem. B 114 (16), 5301 2010.CrossRefGoogle Scholar
  20. 20.
    J. Saikia, B. Saha, and G. Das, R. Soc. Chem. Adv. 2 (26), 10015 (2012).Google Scholar
  21. 21.
    Q. Li, Y. Ding, F. Li, et al., J. Cryst. Growth 236 (1—3), 357 (2002).ADSCrossRefGoogle Scholar
  22. 22.
    B. V. Parakhonskiy, A. Haase, and R. Antolini, Angew. Chem. Int. Ed. 51 (5), 1195 2012.CrossRefGoogle Scholar
  23. 23.
    E. M. Flaten, M. Seiersten, and J.-P. Andreassen, J. Cryst. Growth 311 (13), 3533 2009.ADSCrossRefGoogle Scholar
  24. 24.
    D. M. Carmencita, S. Corneliu, I. Raluca, et al., Conf. Thes. “18-th International Symposium on Industrial Crystallization,” Zurich, September 13—16, 2011, p. 4.Google Scholar
  25. 25.
    S. R. Kamhi, Acta Crystallogr. 16, 770 (1963).CrossRefGoogle Scholar
  26. 26.
    H. J. Meyer, Z. Kristallogr. 128, 183 (1969).CrossRefGoogle Scholar
  27. 27.
    A. Le Bail, S. Ouhenia, and D. Chateigner, Powder Diffr. 26 (1), 16 2011.ADSCrossRefGoogle Scholar
  28. 28.
    H. J. Meyer, Angew. Chem. 71, 673 (1959).Google Scholar
  29. 29.
    U. Wehrmeister, A. L. Soldati, D. E. Jacob, et al., J. Raman. Spectrosc. 41, 193 (2010).Google Scholar
  30. 30.
    R. Demichelis, P. Raiteri, J. Gale, et al., Cryst. Eng. Commun. 14 (1), 44 2012.CrossRefGoogle Scholar
  31. 31.
    E. Mugnaioli, I. Andrusenko, T. Schüler, et al., Angew. Chemie Int. Ed. 51 (28), 7041 2012.CrossRefGoogle Scholar
  32. 32.
    L. Kabalah-Amitai, B. Mayzel, Y. Kauffmann, et al., Science 340 (6131), 454 2012.Google Scholar
  33. 33.
    R. D. R. Demichelis, P. Raiteri, and J. Gale, Cryst. Growth Des. 13 (6), 2247 2012.CrossRefGoogle Scholar
  34. 34.
    S. N. Sulyanov, A. N. Popov, and D. M. Kheiker, J. Appl. Crystallogr. 27, 934 (1994).CrossRefGoogle Scholar
  35. 35.
    J. Rodriguez-Carvajal, Program FullProf; http: //www.ill.eu/sites/fullprofGoogle Scholar
  36. 36.
    J.-P. Andreassen, E. M. Flaten, R. Beck, et al., Chem. Eng. Res. 88 (9), 1163 2010.CrossRefGoogle Scholar
  37. 37.
    J.-P. Andreassen and M. J. Hounslow, Am. Inst. Chem. Eng. 50 (11), 2772 2004.CrossRefGoogle Scholar
  38. 38.
    N. Gehrke, H. Cölfen, N. Pinna, et al., Cryst. Growth Des. 5 (4), 1317 2005.CrossRefGoogle Scholar
  39. 39.
    P. Scardi, P. Leoni, and R. Delhez, J. Appl. Crystallogr. 37 (3), 381 2004.CrossRefGoogle Scholar
  40. 40.
    A. Katerinopoulou, T. Balic-Zunic, and L. F. Lundegaard, J. Appl. Crystallogr. 45 (1), 22 2012.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • D. B. Trushina
    • 1
    • 2
  • S. N. Sulyanov
    • 2
  • T. V. Bukreeva
    • 2
    • 3
  • M. V. Kovalchuk
    • 1
    • 3
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  3. 3.National Research Centre “Kurchatov Institute”MoscowRussia

Personalised recommendations