Skip to main content
Log in

Structural and electrophysical properties of In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As/InP HEMT nanoheterostructures with different combinations of InAs and GaAs inserts in quantum well

  • Surface and Thin Films
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A complex investigation of structural and electrical properties of In0.52Al0.48As/In y Ga1 − y As/In0.52Al0.48As nanoheterostructures on InP substrates containing thin InAs and GaAs inserts in a quantum well (QW) has been performed. The GaAs nanolayers are grown at the QW boundaries between InGaAs and InAlAs layers, while the double InAs inserts are grown in InGaAs layers symmetrically with respect to the QW center. The layer and interface structures have been studied by transmission electron microscopy. It is shown that, when using the proposed epitaxial growth conditions, the introduction of ∼1.2-nm-thick InAs nanoinserts into the InGaAs QW and a ∼1-nm-thick GaAs nanobarrier at the QW boundaries does not induce structural defects. The diffusion of the InAlAs/InGaAs interface (2–3 monolayers) and InAs/InGaAs nanoinsert interface (1–2 monolayers) has been estimated. Measured Hall mobilities and electron concentrations in structures with different combinations of InAs and GaAs inserts have been analyzed using calculated energy band diagrams and electron density distributions. It is found that the photoluminescence spectra of the structures under study have differences caused by specific structural features of coupled QWs (specifically, the change in the In molar fraction due to InAs inserts and the change in the QW thickness due to GaAs transition barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.-H. Kim and J. A. del Alamo, IEEE Electron Dev. Lett. 31(8), 806 (2010).

    Article  ADS  Google Scholar 

  2. E.-Y. Chang, C.-I. Kuo, H.-T. Hsu, et al., Appl. Phys. Express 6, 034001 (2013).

    Article  ADS  Google Scholar 

  3. W. J. Stilman, M. S. Shur, and J. Nanoelectron, Optoelectron. 2, 209 (2007).

    Google Scholar 

  4. N. Dyakonova, A. El Fatimy, J. Lusakowski, et al., Appl. Phys. Lett. 88, 141906 (2006).

    Article  ADS  Google Scholar 

  5. K. Požela, A. Šilénas, J. Požela, et al., Appl. Phys. A 109(1), 233 (2012).

    Article  ADS  Google Scholar 

  6. X. T. Zhu, H. Goronkin, G. N. Maracas, et al., Appl. Phys. Lett. 60(17), 2141 (1992).

    Article  ADS  Google Scholar 

  7. I. S. Vasil’evskii, G. B. Galiev, E. A. Klimov, et al., Semiconductors 45(9), 1158 (2011).

    Article  ADS  Google Scholar 

  8. V. G. Mokerov, I. S. Vasil’evskii, G. B. Galiev, et al., Semiconductors 43(4), 537 (2009).

    Article  ADS  Google Scholar 

  9. D. Xu, H. G. Heiices 45, 21 (1998).

    Google Scholar 

  10. T. A. Akazaki, K. Arai, T. Enoki, et al., IEEE Electron Devices Lett. 13, 325 (1992).

    Article  ADS  Google Scholar 

  11. A. Shilenas, Yu. Pozhela, K. Pozhela, et al., Semiconductors 47(3), 372 (2013).

    Article  ADS  Google Scholar 

  12. D. S. Ponomarev, I. S. Vasil’evskii, G. B. Galiev, et al., Semiconductors 46(4), 484 (2012).

    Article  ADS  Google Scholar 

  13. A. Richter, M. Koch, T. Matsuyama, et al., Appl. Phys. Lett. 77, 3227 (2000).

    Article  ADS  Google Scholar 

  14. N. Maeda, H. Ito, T. Enoki, et al., J. Appl. Phys. 81(3), 1552 (1997).

    Article  ADS  Google Scholar 

  15. M. Sexl, G. Böhm, D. Xu, et al., J. Cryst. Growth 175/176, 915 (1997).

    Article  ADS  Google Scholar 

  16. T. Nakayama and H. Miyamoto, J. Cryst. Growth 201/202, 782 (1999).

    Article  ADS  Google Scholar 

  17. Y. Fedoryshyn, O. Ostinelli, A. Alt, et al., J. Appl. Phys. 115, 043718 (2014).

    Article  ADS  Google Scholar 

  18. E. Tournie and K. H. Ploog, J. Cryst. Growth 135, 97 (1994).

    Article  ADS  Google Scholar 

  19. H. Sugiyama, T. Hoshi, H. Yokoyama, et al., Int. Conf. “Indium Phosphide and Related Materials (IPRM)”, 2012, p. 245.

    Google Scholar 

  20. A. L. Vasil’ev, I. S. Vasil’evskii, G. B. Galiev, et al., Crystallogr. Rep. 56(2), 298 (2011).

    Article  ADS  Google Scholar 

  21. I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, et al., J. Appl. Phys. 89(11), 5815 (2001).

    Article  ADS  Google Scholar 

  22. S. Adachi, Properties of Semiconductor Alloys: Group IV, III-V and II-VI Semiconductors (Wiley, New York, 2009).

    Book  Google Scholar 

  23. X. Wallart, J. Lastennet, D. Wignaud, et al., Appl. Phys. Lett. 87, 043504 (2005).

    Article  ADS  Google Scholar 

  24. X. Wallart, B. Pinsard, and F. Mollot, J. Appl. Phys. 97, 053706 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Galiev.

Additional information

Original Russian Text © G.B. Galiev, A.L. Vasiliev, I.S. Vasil’evskii, R.M. Imamov, E.A. Klimov, A.N. Klochkov, D.V. Lavruhin, P.P. Maltsev, S.S. Pushkarev, I.N. Trunkin, 2015, published in Kristallografiya, 2015, Vol. 60, No. 3, pp. 445–454.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galiev, G.B., Vasiliev, A.L., Vasil’evskii, I.S. et al. Structural and electrophysical properties of In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As/InP HEMT nanoheterostructures with different combinations of InAs and GaAs inserts in quantum well. Crystallogr. Rep. 60, 397–405 (2015). https://doi.org/10.1134/S1063774515030062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774515030062

Keywords

Navigation