Skip to main content

Molecular dynamics studies of pathways of water movement in cyanobacterial photosystem II

Abstract

Photosystem II (PSII) catalyzes the light-induced generation of oxygen from water. The oxygen-evolving complex is buried deep in the protein on the lumenal side of PSII, and water molecules need to pass through protein subunits to reach the active site—the manganese cluster. Previous studies on the elucidation of water channels in PSII were based on an analysis of the cavities in the static PSII structure determined by X-ray diffraction. In the present study, we perform molecular dynamics simulations of the water movement in the transport system of PSII.

This is a preview of subscription content, access via your institution.

References

  1. Y. Umena, K. Kawakami, J. R. Shen, et al., Nature 473, 55 (2011).

    ADS  Article  Google Scholar 

  2. M. Broser, A. Gabdulkhakov, J. Kern, et al., J. Biol. Chem. 285, 26255 (2010).

    Article  Google Scholar 

  3. A. G. Gabdulkhakov and M. V. Dontsova, Usp. Biol. Khim. 53, 323 (2013).

    Google Scholar 

  4. A. Guskov, J. Kern, A. Gabdulkhakov, et al., Nat. Struct. Mol. Biol. 16, 334 (2009).

    Article  Google Scholar 

  5. B. Kok, B. Forbush, and M. McGloin, Photochem. Photobiol. 11, 457 (1970).

    Article  Google Scholar 

  6. Photosystem II: The Light-Driven Water:Plastoquinone. Oxidoreductase. Advances in Photosynthesis, Ed. by T. Wydrzynski, K. Satoh, and Govindjee (Springer, Dordrecht, 2005).

    Google Scholar 

  7. J. Kern and G. Renger, Photosynth. Res. 94, 183 (2007).

    Article  Google Scholar 

  8. A. Zouni, H. T. Witt, J. Kern, et al., Nature 409, 739 (2001).

    ADS  Article  Google Scholar 

  9. K. N. Ferreira, T. M. Iverson, K. Maghlaoui, et al., Science 303, 1831 (2004).

    ADS  Article  Google Scholar 

  10. J. W. Murray and J. Barber, J. Struct. Biol. 159, 228 (2007).

    Article  Google Scholar 

  11. A. Gabdulkhakov, A. Guskov, M. Broser, et al., Structure 17, 1223 (2009).

    Article  Google Scholar 

  12. F. M. Ho and S. Styring, Biochim. Biophys. Acta 1777, 140 (2008).

    Article  Google Scholar 

  13. J. Cohen, K. Kim, P. King, et al., Structure 13, 1321 (2005).

    Article  Google Scholar 

  14. S. Vassiliev, P. Comte, A. Mahboob, et al., Biochemistry 49, 1873 (2010).

    Article  Google Scholar 

  15. S. Vassiliev, T. Zaraiskaya, and D. Bruce, Biochim. Biophys. Acta 1817, 1671 (2012).

    Article  Google Scholar 

  16. K. Ogata, T. Yuki, M. Hatakeyama, et al., J. Am. Chem. Soc. 135, 15670 (2013).

    Article  Google Scholar 

  17. B. Hess, C. Kutzner, D. v. d. Spoel, et al., Chem. Theor. Comput. 4, 435 (2008).

    Article  Google Scholar 

  18. A. D. MacKerell, D. Bashford, M. Bellott, et al., J. Phys. Chem. 102, 3586 (1998).

    Article  Google Scholar 

  19. A. D. Mackerell, Jr, M. Feig, et al., J. Comput. Chem. 25, 1400 (2004).

    Article  Google Scholar 

  20. B. Hess, H. Bekker, H. J. C. Berendsen, et al., J. Comput. Chem. 18, 1463 (1997).

    Article  Google Scholar 

  21. T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).

    ADS  Article  Google Scholar 

  22. U. Essmann, L. Perera, M. L. Berkowitz, et al., J. Chem. Phys. 103, 8577 (1995).

    ADS  Article  Google Scholar 

  23. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, et al., J. Chem. Phys. 81, 3684 (1984).

    ADS  Article  Google Scholar 

  24. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., J. Chem. Phys. 79, 926 (1983).

    ADS  Article  Google Scholar 

  25. http://www.swissparam.ch/.

  26. R. A. Laskowski, M. W. MacArthur, D. S. Moss, et al., J. Appl. Crystallogr. 26, 283 (1993).

    Article  Google Scholar 

  27. I. Sakurai, J. R. Shen, J. Leng, et al., J. Biochem. 140, 201 (2006).

    Article  Google Scholar 

  28. A. Zouni, R. Jordan, E. Schlodder, et al., Biochim. Biophys. Acta 1457, 103 (2000).

    Article  Google Scholar 

  29. K. Olesen and L. E. Andreasson, Biochemistry 42, 2025 (2003).

    Article  Google Scholar 

  30. M. L. Quillin, W. A. Breyer, I. J. Griswold, et al., J. Mol. Biol. 302, 955 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Gabdulkhakov.

Additional information

Original Russian Text © A.G. Gabdulkhakov, V.G. Kljashtorny, M.V. Dontsova, 2015, published in Kristallografiya, 2015, Vol. 60, No. 1, pp. 91–97.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gabdulkhakov, A.G., Kljashtorny, V.G. & Dontsova, M.V. Molecular dynamics studies of pathways of water movement in cyanobacterial photosystem II. Crystallogr. Rep. 60, 83–89 (2015). https://doi.org/10.1134/S1063774515010083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774515010083

Keywords

  • Molecular Dynamic Simulation
  • Crystallography Report
  • Root Mean Square Deviation
  • Lumenal Side
  • Photosynthetic Complex