Skip to main content
Log in

X-ray diffraction, DFT, spectroscopic study and insecticidal activity of (3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-((trifluoromethyl)sulfinyl)-1H-pyrazol-5-yl)(2-(triethylammonio)acetyl)amide inner salt

  • Structure of Organic Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

In the title compound, C20H19Cl2F6N5O2S, an inner salt derivative of fipronil was synthesized and characterized by X-ray diffraction, 1H NMR, 13C NMR, IR, ESI-MS, EI-HRMS. The crystal is monoclinic, space group P21/n, with a = 15.1655(7) Å, b = 15.0465(7) Å, c = 21.0713(9) Å, V = 4754.7(4) Å3 and Z = 8 (at 173(2) K), and its phenyl pyrazole ring together with bond C-N-O form a big π bond while bonds C-N-C and N-C-H form an inner salt molecular. Crystal stacking scheme indicates the crystal consists of two different molecules. The two molecules are nonplanar with the torsion angles between the pyrazole rings and benzene rings of −99.7(7)° and 88.1(7)°, respectively, and linked by intermolecular C-H⋯O, C-H⋯F hydrogen bonds. By DFT calculations, molecular electrostatic potential clearly shows that the formation of hydrogen bonding interaction, which F5⋯H′42 and F6⋯H′41 are intermolecular hydrogen bonds, and F7⋯H44 is an intramolecular hydrogen bond in the crystal structure, is between the positive and negative regions. In addition, molecular geometry optimized by DFT methods is in good agreement with the experimental values. In the optimized structure, the O-S, S-C, C-F and C-Cl bonds are slightly longer in comparison with those in the crystal. The intermolecular interaction energy for the dimmer was calculated to be 4.96 kcal mol−1. The results reveal that the two monomers are slightly combined with each other through two weak F⋯H hydrogen bonds. The compound and fipronil exhibited high insecticidal activity against the third instar larvae of Asian Corn Borer (Ostrinia furnacalis (Guenée)) at 48 h after treatment with LC50 values of 4.17 μg/mL (r 2 = 0.9974) and 5.36 μg/mL (r 2 = 0.9970), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Moffat, Science 261, 550 (1993).

    Article  ADS  Google Scholar 

  2. T. Ikeda, X. Zhao, K. Nagata, et al., J. Pharmacol. Exp. Ther. 296, 914 (2001).

    Google Scholar 

  3. I. Tomoko, N. Keiichi, K. Yoshiaki, et al., Pest Manag. Sci. 60, 487 (2004).

    Article  Google Scholar 

  4. O. Yoshihisa, Y. Kazuo, N. Masafumi, et al., Pestic. Biochem. Phys. 66, 92 (2000); http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed&cmd=search&term=PESTIC%20BIOCHEM%20PHYS%20%5bta%5d.

    Article  Google Scholar 

  5. A. Asmae, R. Muriel, A. Heddia, et al., J. Agric. Food. Chem. 54, 5055 (2006).

    Article  Google Scholar 

  6. Y. L. Wang, J. G. Cheng, X. H. Qian, et al., Bioorg. Med. Chem. 15, 2624 (2007).

    Article  Google Scholar 

  7. L. Chen, K. A. Durkin, and J. E. Casida, Proc. Nat. Acad. Sci. USA 103, 5185 (2006).

    Article  ADS  Google Scholar 

  8. D. X. Jiang, X. H. Zheng, G. Shao, et al., J. Agric. Food. Chem. 62, 3577 (2014).

    Article  Google Scholar 

  9. G. M. Sheldrick, Acta Cryst. A 64, 112 (2008).

    Article  Google Scholar 

  10. Stereochemical Workstation Operation Manual, Release 3.4, Siemens Analytical X-ray Instruments INC., Madison, 1989.

  11. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  12. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  13. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).

    Article  Google Scholar 

  14. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).

    Article  ADS  Google Scholar 

  15. W. R. Wadt and P. J. Hay, J. Chem. Phys. 82, 284 (1985).

    Article  ADS  Google Scholar 

  16. S. Huzinaga, Gaussian Basis Sets for Molecular Calculations (Elsevier Science Pub. Co., Amsterdam, 1984).

    Google Scholar 

  17. P. C. Hariharan and J. A. Pople, Theor. Chim. Acta 28, 213 (1973).

    Article  Google Scholar 

  18. J. A. Pople, Gaussian 09, Revision A.01 (Gaussian, Inc., Pittsburgh, PA, 2009).

    Google Scholar 

  19. R. F. W. Bader, Atoms in Molecules, A Quantum Theory, International Series of Monographs in Chemistry (Oxford University Press, Oxford, 1990).

    Google Scholar 

  20. F. Biegler-König, J. S Chönbohm, R. Derdau, et al., AIM 2000, Version 2.0 (McMaster University, 2002).

    Google Scholar 

  21. G. Louit, A. Hoquet, M. Ghomi, et al., Phys. Chem. Comm. 6, 1 (2003).

    Google Scholar 

  22. G. Louit, A. Hoquet, M. Ghomi, et al., Phys. Chem. Comm. 5, 94 (2002).

    Google Scholar 

  23. P. L. A. Popelier, J. Phys. Chem. A 102, 1873 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. X. Jiang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, D.X., Zheng, X.H., Xu, H.H. et al. X-ray diffraction, DFT, spectroscopic study and insecticidal activity of (3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-((trifluoromethyl)sulfinyl)-1H-pyrazol-5-yl)(2-(triethylammonio)acetyl)amide inner salt. Crystallogr. Rep. 59, 1078–1083 (2014). https://doi.org/10.1134/S1063774514080045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774514080045

Keywords

Navigation