Skip to main content
Log in

Simulation of self-organization processes in crystal-forming systems: Supramolecular cyclic R6 cluster precursors and self-assembly of TeO2-TEL (Tellurite) and TeO2-PAR (Paratellurite) structures

  • Theory of Crystal Structures
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The supramolecular chemistry of oxides of sp elements (SO2, SeO2, and TeO2) is considered. The self-assembly of TeO2-TEL (Tellurite) and TeO2-PAR (Paratellurite) crystal structures is simulated. Methods of combinatorial and topological analysis (TOPOS program package) are applied which are based on constructing a basis 3D network of the structure in the form of a graph, the sites of which correspond to the positions of centroids of TeO2 molecules and the edges characterize bonds between them. The topological type of the basis 2D network in the TeO2-TEL structure corresponds to graphite (C-GRA), while in the TeO2-PAR structure the basis network corresponds to the 3D diamond network (C-DIA). A nanocluster precursor of cyclic type (R6) composed of six covalently bound TeO2 molecules (chair conformation) is established for both structures. The desymmetrization of the cyclic structure of the R6 cluster in TeO2-PAR is related to the formation of Te-Te bonds with lengths of 3.824 and 4.062 Å. The symmetry and topology code of the processes of self-assembly of 3D structures from nanocluster precursors is completely reconstructed into the form “primary chain → microlayer → microframework.” In both structures R6 clusters form 2D packings with a coordination number of 6. The cluster self-assembly model explains the specific features of the morphogenesis of TeO2-TEL and TeO2-PAR (phases with low and high crystallization temperatures, respectively): platelike shape, perfect cleavage in the (110) plane, and preferred growth in the primar-chain direction [100] in the former case and growth in the direction of the primary [001] axis with the preferred formation of tetragonal prism faces (110) in the latter case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Eigen, Self-Organization of Matter and the Evolution of Biological Macromolecules (Mir, Moscow, 1973) [in Russian].

    Google Scholar 

  2. M. Eigen and P. Schuster, Hypercycle: A Principle of Natural Self-Organization (Springer, Berlin, 1979; Mir, Moscow, 1982).

    Book  Google Scholar 

  3. J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim, 1995; Nauka, Novosibirsk, 1998).

    Book  Google Scholar 

  4. J.-M. Lehn, Chem. Soc. Rev. 36, 151 (2007).

    Article  Google Scholar 

  5. J. W. Steed and J. L. Atwood, Supramolecular.Chemistry (Wiley, New York, 2000).

    Google Scholar 

  6. Supramolecular Polymers, Ed. by A. C. Dekker (New York, 2005).

    Google Scholar 

  7. G. R. Desiraju, Perspectives in Supramolecular Chemistry, Vol. 2 (Wiley, Chechester, 1995).

    Google Scholar 

  8. G. R. J. Desiraju, Am. Chem. Soc. 135, 9952 (2013).

    Article  Google Scholar 

  9. G. D. Ilyushin and L. N. Dem’yanets, Physics of Crystallization. Collected Works by IK RAN (FIZMATLIT, Moscow, 2002) [in Russian], p. 82.

    Google Scholar 

  10. G. D. Ilyushin, Modeling of Self-Organization Processes in Crystal-Forming Systems (URSS, Moscow, 2003) [in Russian].

    Google Scholar 

  11. G. D. Ilyushin, Crystallogr. Rep. 48, 3 (2004).

    Google Scholar 

  12. G. D. Ilyushin, Crystallogr. Rep. 57(2), 169 (2012).

    Article  ADS  Google Scholar 

  13. G. D. Ilyushin, Struct. Chem. 20(6), 975 (2012).

    Google Scholar 

  14. G. D. Ilyushin, Russ. J. Inorg. Chem. 57(14), 1737 (2012).

    Article  Google Scholar 

  15. G. D. Ilyushin, Russ. J. Inorg. Chem. 58(13), 1541 (2013).

    Article  Google Scholar 

  16. A. Wells, Structural Inorganic Chemistry (Clarendon, Oxford, 1984; Mir, Moscow, 1987).

    Google Scholar 

  17. Inorganic Crystal Structure Database (ICSD) (Fachinformationszentrum Karlsruhe (FIZ), Germany, and US National Institute of Standart and Technology (NIST) USA).

  18. B. Post, R. S. Schwartz, and I. Fankuchen, Acta Crystallogr. 5, 372 (1952).

    Article  Google Scholar 

  19. K. Stahl, J. P. Legros, and J. Galy, Z. Kristallogr. 202, 99 (1992).

    Article  Google Scholar 

  20. H. H. Beyer, Z. Kristallogr. 124, 228 (1967).

    Article  Google Scholar 

  21. I. P. Kondratyuk, L. A. Muradyan, Yu. V. Pisarevskii, and V. I. Simonov, Kristallografiya 32(3), 609 (1987).

    Google Scholar 

  22. V. A. Blatov, IUCr CompComm Newsl, No. 7, 4 (2006).

    Google Scholar 

  23. V. A. Blatov, Zh. Strukt. Khim. 50, 166 (2009).

    Google Scholar 

  24. N. A. Anurova, V. A. Blatov, G. D. Ilyushin, and D. M. Proserpio, J. Phys. Chem. C 114(22), 10160 (2010).

    Article  Google Scholar 

  25. G. D. Ilyushin and V. A. Blatov, Crystallogr. Rep. 56(1), 75 (2011).

    Article  ADS  Google Scholar 

  26. V. A. Blatov and G. D. Ilyushin, Kristallografiya 57(2), 415 (2012).

    Google Scholar 

  27. G. D. Ilyushin and V. A. Blatov, Crystallogr. Rep. 57(7), 3 (2012).

    Article  Google Scholar 

  28. V. A. Blatov, G. D. Ilyushin, and D. M. Proserpio, Chem. Mater. 25(3), 412 (2013).

    Article  Google Scholar 

  29. G. D. Ilyushin and V. A. Blatov, Acta Crystallogr. 65, 300 (2009).

    Article  Google Scholar 

  30. A. Pankova, V. Blatov, G. Ilyushin, and D. Proserpio, Inorg. Chem. 52, 13094 (2013).

    Article  Google Scholar 

  31. R. A. Lidin, Chemical Properties of Inorganic Materials (Khimiya, Moscow, 2000) [in Russian].

    Google Scholar 

  32. Chemical Encyclopedia, Vol. 4 (Bol’shaya Rossiiskaya Entsiklopediya, Moscow, 1995) [in Russian].

  33. J. S. Wang, E. M. Vogel, and E. Snitzer, Opt. Mater. 3(4), 187 (1994).

    Article  ADS  Google Scholar 

  34. R. A. H. El-Mallawany, Tellurite Glasses Handbook: Physical Properties and Data (CRC Press, 2001), p. 568.

    Book  Google Scholar 

  35. S. P. Gabuda and S. G. Kozlova, J. Phys. Chem. B Lett. 110, 18091 (2006).

    Article  Google Scholar 

  36. S. P. Gabuda, S. G. Kozlova, O. B. Lapina, and V. V. Terskikh, Chem. Phys. Lett. 282, 245 (1997).

    Article  ADS  Google Scholar 

  37. N. Berkaine, E. Orhan, O. Masson, and P. Thomas, Phys. Rev. B 83(24), 245205 (2011).

    Article  ADS  Google Scholar 

  38. O. Noguera, M. B. Smirnov, A. P. Mirgorodsky, et al., Phys. Rev. B 68, 094203 (2003).

    Article  ADS  Google Scholar 

  39. O. Noguera, M. B. Smirnov, A. P. Mirgorodsky, et al., J. Non-Cryst. Solids 345, 734 (2004).

    Article  ADS  Google Scholar 

  40. A. P. Mirgorodsky, M. Soulis, P. Thomas, et al., Phys. Rev. B 73, 134206 (2006).

    Article  ADS  Google Scholar 

  41. M. Soulis, T. Merle-M’ejean, A. P. Mirgorodsky, et al., J. Non-Cryst. Solids 354, 199 (2008).

    Article  ADS  Google Scholar 

  42. M. Smirnov, A. Mirgorodsky, O. Masson, and P. Thomas, J. Phys. Chem. A 116, 9361 (2012).

    Article  Google Scholar 

  43. E. R. Barney, A. C. Hannon, D. Holland, et al., J. Phys. Chem. Lett., No. 4, 2312 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Ilyushin.

Additional information

Dedicated to the International Year of Crystallography

Original Russian Text © G.D. Ilyushin, 2014, published in Kristallografiya, 2014, Vol. 59, No. 6, pp. 933–941.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyushin, G.D. Simulation of self-organization processes in crystal-forming systems: Supramolecular cyclic R6 cluster precursors and self-assembly of TeO2-TEL (Tellurite) and TeO2-PAR (Paratellurite) structures. Crystallogr. Rep. 59, 847–854 (2014). https://doi.org/10.1134/S1063774514060121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774514060121

Keywords

Navigation