Crystallography Reports

, Volume 59, Issue 5, pp 662–678

Combined atomic ordering in the A and B sublattices of perovskite structure

Theory of Crystal Structures

Abstract

The simultaneous ordering of cations in the A and B sublattices of cubic perovskite structure has been investigated by the group-theoretical method. It is found that 147 ordered phases may exist. Among them, there may be 121 phases with simultaneous cation ordering in the 1(a)- and 1(c) positions of perovskite structure. It is shown that 53 phases are described by improper order parameters related to cation ordering, the formation of 56 phases is related to improper rotations of octahedra, and 15 phases are improper ferroelectrics. Calculated structures of some types of ordered low-symmetry perovskite modifications are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Aleksandrov and B. V. Beznosikov, Perovskites: Present and Future. Variety of Parent Phases, Phase Transitions, Possibilities of Synthesis of New Compounds (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2004) [in Russian].Google Scholar
  2. 2.
    Physics of Ferroelectrics: A Modern Perspective, Ed. by K. M. Rabe et al. (Springer, New York, 2007; BINOM, Moscow, 2011).Google Scholar
  3. 3.
    K. S. Aleksandrov and B. V. Beznosikov, Perovskite-like Crystals (Nauka, Novosibirsk, 1997) [in Russian].Google Scholar
  4. 4.
    R. H. Mitchel, Perovskites, Modern and Ancient (Almaz Press, Canada, 2002).Google Scholar
  5. 5.
    E. G. Fesenko, Perovskite Family and Ferroelectricity (Atomizdat, Moscow, 1972) [in Russian].Google Scholar
  6. 6.
    G. King and P. M. Woodward, J. Mater. Chem. 20, 5785 (2010).CrossRefGoogle Scholar
  7. 7.
    P. K. Davies, Current Opinion Solid State Mater. Sci. 4, 467 (1999).CrossRefADSGoogle Scholar
  8. 8.
    M. T. Anderson, K. B. Greenwood, G. A. Taylor, and K. R. Poeppelmeier, Prog. Solid State Chem. 22, 197 (1993).CrossRefGoogle Scholar
  9. 9.
    P. K. Davies, H. Wu, A. Y. Borisevich, et al., Annu. Rev. Mater. Res. 38, 369 (2008).CrossRefADSGoogle Scholar
  10. 10.
    C. J. Howard, B. J. Kennedy, and P. M. Woodward, Acta Crystallogr. B 59, 463 (2003).CrossRefGoogle Scholar
  11. 11.
    V. A. Isupov, Phys. Solid State 49(3), 505 (2007).CrossRefADSGoogle Scholar
  12. 12.
    V. A. Isupov, Crystallogr. Rep. 49(5), 719 (2004).CrossRefADSGoogle Scholar
  13. 13.
    K. S. Aleksandrov and S. V. Misyul’, Kristallografiya 26(5), 1074 (1981).Google Scholar
  14. 14.
    M. F. Kupriyanov and E. G. Fesenko, Kristallografiya 7(3), 451 (1962).Google Scholar
  15. 15.
    V. M. Talanov, Energy Crystal Chemistry of Multisublattice Crystals (Model of Elastic Action-Anion Bonds) (Izd-vo Rostov Univ., Rostov-on-Don, 1986) [in Russian].Google Scholar
  16. 16.
    P. K. Davies, Curr. Opin. Solid State Mater. Sci. 4, 467 (1999).CrossRefADSGoogle Scholar
  17. 17.
    L. E. Cross, Ferroelectrics 151, 305 (1994).CrossRefGoogle Scholar
  18. 18.
    Y. Inaguma, L. Chen, M. Itoh, and T. Nakamura, Solid State Ionics 70/71, 196 (1994).CrossRefGoogle Scholar
  19. 19.
    V. P. Sakhnenko and N. V. Ter-Oganesyan, Crystallogr. Rep. 48(3), 443 (2003).CrossRefADSGoogle Scholar
  20. 20.
    O. V. Kovalev, Irreducible Representations of Space Groups (Izd-vo AN USSR, Kiev, 1961) [in Russian].Google Scholar
  21. 21.
    V. M. Talanov, M. V. Talanov, and V. B. Shirokov, Crystallogr. Rep. 59(5), 650 (2014).Google Scholar
  22. 22.
    V. P. Sakhnenko, V. M. Talanov, and G. M. Chechin, Fiz. Met. Metalloved. 62(5), 847 (1986).Google Scholar
  23. 23.
    S. V. Misyul’, Doctoral Dissertation in Physics and Mathematics (Krasnoyarsk, 2000).Google Scholar
  24. 24.
    V. M. Talanov, Phys. Status Solidi A 115(1), K.1 (1989).MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    V. M. Talanov, Phys. Status Solidi B 162, 339 (1990).CrossRefADSGoogle Scholar
  26. 26.
    V. M. Talanov, Phys. Status Solidi B 162, 61 (1990).CrossRefADSGoogle Scholar
  27. 27.
    V. M. Talanov, Fiz. Khim. Stekla 33(6), 852 (2007).Google Scholar
  28. 28.
    V. M. Talanov, V. B. Shirokov, V. V. Ivanov, and M. V. Talanov, Kristallografiya 58(1), 80 (2012).Google Scholar
  29. 29.
    V. M. Talanov and V. B. Shirokov, Crystallogr. Rep. 58(2), 314 (2013).CrossRefADSGoogle Scholar
  30. 30.
    V. M. Talanov and G. M. Chechin, Kristallografiya 35(4), 1008 (1990).Google Scholar
  31. 31.
    V. M. Talanov, Kristallografiya 41(6), 979 (1996).MathSciNetGoogle Scholar
  32. 32.
    V. B. Shirokov and V. I. Torgashev, Crystallogr. Rep. 49(1), 20 (2004).CrossRefADSGoogle Scholar
  33. 33.
    H. T. Stokes and D. M. Hatch, ISOTROPY (2007); http://stokes.byu.edu/iso/isotropy.html.Google Scholar
  34. 34.
    D. M. Hatch and H. T. Stokes, Computer Modeling of Phase Diagrams (Metallyrgical Society of AMIE, Pennsylvania, 1986), p. 145.Google Scholar
  35. 35.
    L. D. Landau, Collection of Works (Nauka, Moscow, 1969), Vol. 1 [in Russian], p. 234.Google Scholar
  36. 36.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).Google Scholar
  37. 37.
    E. M. Lifshits, Zh. Eksp. Teor. Fiz. 11, 255 (1941).Google Scholar
  38. 38.
    Yu. M. Gufan, Structural Phase Transitions (Nauka, Moscow, 1982) [in Russian].Google Scholar
  39. 39.
    O. V. Kovalev, Representations of Crystallographic Space Groups. Irreducible Representations, Induced Representations and Co-representations (Taylor and Francis, London, 1993).Google Scholar
  40. 40.
    Yu. M. Gufan, Fiz. Tverd. Tela 13(1), 225 (1971).Google Scholar
  41. 41.
    G. M. Chechin, Comput. Math. Applic. 17, 255 (1989).MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    V. M. Talanov and V. B. Shirokov, Acta Crystallogr. A 70, 49 (2014).MathSciNetCrossRefGoogle Scholar
  43. 43.
    E. B. Vinberg, Yu. M. Gufan, V. P. Sakhnenko, and Yu. I. Sirotin, Kristallografiya 19(1), 21 (1974).Google Scholar
  44. 44.
    J.-C. Toledano and P. Toledano, The Landau Theory of Phase Transitions (World Scientific, 1987), p. 451.CrossRefGoogle Scholar
  45. 45.
    Yu. A. Izyumov and V. N. Syromyatnikov, Phase Transitions and Crystal Symmetry (Nauka, Moscow, 1984) [in Russian].Google Scholar
  46. 46.
    L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev. 50, 58 (1936).CrossRefMATHADSGoogle Scholar
  47. 47.
    A. P. Levanyuk and D. G. Sannikov, Usp. Fiz. Nauk 112(4), 561 (1974).CrossRefGoogle Scholar
  48. 48.
    M. Ducau, K. S. Suh, J. Senegas, and J. Darriet, Mater. Res. Bull. 27, 1115 (1992).CrossRefGoogle Scholar
  49. 49.
    J. Darriet, S. G. Mayorga, and A. Tressaud, Eur. J. Solid State Inorg. Chem. 27, 783 (1990).Google Scholar
  50. 50.
    K. Kitahama, Y. Hori, T. Kawai, and S. Kawai, Jpn. J. Appl. Phys. 30(5A), L809 (1991).CrossRefADSGoogle Scholar
  51. 51.
    E. A. Genkina, R. Sh. Zhdanov, Yu. A. Malinovskii, et al., Kristallografiya 37(5), 1164 (1992).Google Scholar
  52. 52.
    A. Roy and D. Vanderbit, Phys. Rev. B 83, 134116 (2011).CrossRefADSGoogle Scholar
  53. 53.
    G. Rijnder, J. Blok, and D. H. A. Blank, Bull. Am. Phys. Soc. 55(2), 24 (2010).Google Scholar
  54. 54.
    M. Pissas, V. Psycharis, C. Mitros, et al., J. Magn. Magn. Mater. 104–107, 571 (1992).CrossRefGoogle Scholar
  55. 55.
    M. Pissas, C. Mitros, G. Kallias, et al., Physica C 192, 35 (1992).CrossRefADSGoogle Scholar
  56. 56.
    L. Er-Rakho, C. Miceli, P. Lacorre, and B. Raveau, J. Solid State Chem. 73, 531 (1988).CrossRefADSGoogle Scholar
  57. 57.
    J. H. Liao and M. C. Tsai, Cryst. Growth Des. 2(2), 83 (2002).CrossRefGoogle Scholar
  58. 58.
    M. E. Castillo, A. J. Williams, and J. P. Attfield, J. Solid State Chem. 179, 3505 (2006).CrossRefADSGoogle Scholar
  59. 59.
    J. P. Chapman, J. P. Attfield, M. Molgg, et al., Angew. Chem. 35, 2482 (1996).CrossRefGoogle Scholar
  60. 60.
    F. Millange, E. Suard, V. Caignaert, and B. Raveau, Mater. Res. Bull. 34(1), 1 (1999).CrossRefGoogle Scholar
  61. 61.
    Y. Torii, Chem. Lett. 10, 1215 (1979).CrossRefGoogle Scholar
  62. 62.
    T. Katsumata, M. Takahata, N. Mochizuki, and Y. Inaguma, Solid State Ionics 171, 191 (2004).CrossRefGoogle Scholar
  63. 63.
    M. C. Knapp and P. M. Woodward, J. Solid State Chem. 179, 1076 (2006).CrossRefADSGoogle Scholar
  64. 64.
    H. T. Chung and H. G. Kim, Han’guk Chaelyo Hakhoechi 5, 748 (1995).Google Scholar
  65. 65.
    N. V. Zubkova, A. V. Arakcheeva, D. Yu. Pushcharovskii, et al., Crystallogr. Rep. 45(2), 210 (2000).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • M. V. Talanov
    • 1
  • V. B. Shirokov
    • 1
    • 2
  • V. M. Talanov
    • 3
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  3. 3.South-Russian State Technical UniversityNovocherkasskRussia

Personalised recommendations