Crystallography Reports

, Volume 59, Issue 5, pp 650–661

Group-theoretical study of cationic ordering in perovskite structure

Theory of Crystal Structures
  • 129 Downloads

Abstract

Atomic ordering in the structure of cubic perovskite has been investigated by the group-theoretical method. The possibility of existence of 13 ordered phases in the 1(a) position (including four binary, two ternary, and five quaternary cationic superstructures) and 13 phases with different types of ordering in the 1(b) position (including four binary, two ternary, and five quaternary cationic superstructures) is established. Calculated structures of some types of ordered low-symmetry perovskite modifications are reported.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Aleksandrov and B. V. Beznosikov, Perovskites: Present and Future. Variety of Parent Phases, Phase Transitions, Possibilities of Synthesis of New Compounds (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2004) [in Russian].Google Scholar
  2. 2.
    Physics of Ferroelectrics: A Modern Perspective, Ed. by K. M. Rabe et al. (Springer, New York, 2007; BINOM, Moscow, 2011).Google Scholar
  3. 3.
    K. S. Aleksandrov and B. V. Beznosikov, Perovskite-like Crystals (Nauka, Novosibirsk, 1997) [in Russian].Google Scholar
  4. 4.
    R. H. Mitchel, Perovskites, Modern and Ancient (Almaz Press, Canada, 2002).Google Scholar
  5. 5.
    E. G. Fesenko, Perovskite Family and Ferroelectricity (Atomizdat, Moscow, 1972) [in Russian].Google Scholar
  6. 6.
    G. King and P. M. Woodward, J. Mater. Chem. 20, 5785 (2010).CrossRefGoogle Scholar
  7. 7.
    P. K. Davies, Current Opinion Solid State Mater. Sci. 4, 467 (1999).CrossRefADSGoogle Scholar
  8. 8.
    M. T. Anderson, K. B. Greenwood, G. A. Taylor, and K. R. Poeppelmeier, Prog. Solid State Chem. 22, 197 (1993).CrossRefGoogle Scholar
  9. 9.
    P. K. Davies, H. Wu, A. Y. Borisevich, et al., Annu. Rev. Mater. Res. 38, 369 (2008).CrossRefADSGoogle Scholar
  10. 10.
    C. J. Howard, B. J. Kennedy, and P. M. Woodward, Acta Crystallogr. B 59, 463 (2003).CrossRefGoogle Scholar
  11. 11.
    V. A. Isupov, Phys. Solid State 49(3), 505 (2007).CrossRefADSGoogle Scholar
  12. 12.
    V. A. Isupov, Crystallogr. Rep. 49(5), 719 (2004).CrossRefADSGoogle Scholar
  13. 13.
    K. S. Aleksandrov and S. V. Misyul’, Kristallografiya 26(5), 1074 (1981).Google Scholar
  14. 14.
    M. F. Kupriyanov and E. G. Fesenko, Kristallografiya 7(3), 451 (1962).Google Scholar
  15. 15.
    M. W. Lufaso, P. W. Barnes, and P. M. Woodward, Acta Crystallogr. B 62, 397 (2006).CrossRefGoogle Scholar
  16. 16.
    P. W. Barnes, M. W. Lufaso, and P. M. Woodward, Acta Crystallogr. B 62, 384 (2006).CrossRefGoogle Scholar
  17. 17.
    P. M. Woodward, R. D. Hoffmann, and A. W. Sleight, J. Mater. Res. 9, 2118 (1994).CrossRefADSGoogle Scholar
  18. 18.
    P. Karen, P. M. Woodward, J. Linden, et al., Phys. Rev. B 64, 214405 (2001).CrossRefADSGoogle Scholar
  19. 19.
    P. M. Woodward and P. Karen, Inorg. Chem. 42, 1121 (2003).CrossRefGoogle Scholar
  20. 20.
    P. M. Woodward, E. Suard, and P. Karen, J. Am. Chem. Soc. 125, 8889 (2003).CrossRefGoogle Scholar
  21. 21.
    P. Karen, A. Kjekshus, Q. Huang, et al., J. Solid State Chem. 174, 87 (2003).CrossRefADSGoogle Scholar
  22. 22.
    V. Caignaert, F. Millange, B. Domenges, et al., Chem. Mater. 11, 930 (1999).CrossRefGoogle Scholar
  23. 23.
    F. Millange, V. Caignaert, B. Domenges, et al., Chem. Mater. 10, 1974 (1998).CrossRefGoogle Scholar
  24. 24.
    D. D. Khalyavin, A. M. R. Senos, and P. Q. Mantas, J. Phys.: Condens. Matter 17, 2585 (2005).ADSGoogle Scholar
  25. 25.
    J-H. Park, P. M. Woodward, J. B. Parise, et al., Chem. Mater. 11, 177 (1999).CrossRefGoogle Scholar
  26. 26.
    J-H. Park, P. M. Woodward, and J. B. Parise, Chem. Mater. 10, 3092 (1998).CrossRefGoogle Scholar
  27. 27.
    L. Dupont, L. Chai, and P. K. Davies, Mat. Res. Soc. Symp. Proc. (Solid State Chem. Inorgan. Mater. II) 547, 93 (1999).CrossRefGoogle Scholar
  28. 28.
    M. Ducau, K. S. Suh, J. Senegas, and J. Darriet, Mater. Res. Bull. 27, 1115 (1992).CrossRefGoogle Scholar
  29. 29.
    J. Darriet, S. G. Mayorga, and A. Tressaud, Eur. J. Solid State Inorg. Chem. 27, 783 (1990).Google Scholar
  30. 30.
    C. J. Howard, B. Kennedyc, and P. M. Woodward, Acta Crystallogr. B 59, 463 (2003).CrossRefGoogle Scholar
  31. 31.
    C. J. Howard and H. T. Stokes, Acta Crystallogr. B 60, 674 (2004).CrossRefGoogle Scholar
  32. 32.
    C. J. Howard and M. A. Carpenter, Acta Crystallogr. B 66, 40 (2010).CrossRefGoogle Scholar
  33. 33.
    Y. Shimakawa, Inorg. Chem. 47, 8562 (2008).CrossRefGoogle Scholar
  34. 34.
    R. A. F. Pinlac, Ch. L. Stern, and K. R. Poeppelmeier, Crystals 1, 3 (2011).CrossRefGoogle Scholar
  35. 35.
    L. D. Landau, Collection of Works (Nauka, Moscow, 1969), Vol. 1 [in Russian], p. 234.Google Scholar
  36. 36.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).Google Scholar
  37. 37.
    Yu. M. Gufan, Structural Phase Transitions (Nauka, Moscow, 1982) [in Russian].Google Scholar
  38. 38.
    E. B. Vinberg, Yu. M. Gufan, V. P. Sakhnenko, and Yu. I. Sirotin, Kristallografiya 19(1), 21 (1974).Google Scholar
  39. 39.
    H. T. Stokes and D. M. Hatch, ISOTROPY (2007); http://stokes.byu.edu/iso/isotropy.html.Google Scholar
  40. 40.
    D. M. Hatch and H. T. Stokes, Computer Modeling of Phase Diagrams (Metallyrgical Society of AMIE, Pennsylvania, 1986), p. 145.Google Scholar
  41. 41.
    V. B. Shirokov and V. I. Torgashev, Crystallogr. Rep. 49(1), 20 (2004).CrossRefADSGoogle Scholar
  42. 42.
    F. Galasso and J. Pyle, Inorg. Chem. 2, 482 (1963).CrossRefGoogle Scholar
  43. 43.
    C. J. Howard and H. T. Stokes, Acta Crystallogr. A 61, 93 (2005).CrossRefADSGoogle Scholar
  44. 44.
    O. V. Kovalev, Irreducible Representations of Space Groups (Izd-vo AN USSR, Kiev, 1961) [in Russian].Google Scholar
  45. 45.
    V. P. Sakhnenko, V. M. Talanov, and G. M. Chechin, Fiz. Met. Metalloved. 62(5), 847 (1986).Google Scholar
  46. 46.
    A. P. Levanyuk and D. G. Sannikov, Usp. Fiz. Nauk 112(4), 561 (1974).CrossRefGoogle Scholar
  47. 47.
    L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev. 50, 58 (1936).CrossRefMATHADSGoogle Scholar
  48. 48.
    H. D. Megaw, Crystal Structures: A Woking Approach (Saunders, Phyladelphia, 1973).Google Scholar
  49. 49.
    Y. Minet, V. Lefranc, N. Nguyen, et al., J. Solid State Chem. 121, 158 (1996).CrossRefADSGoogle Scholar
  50. 50.
    P. Karen and P. M. Woodward, J. Mater. Chem. 9, 789 (1999).CrossRefGoogle Scholar
  51. 51.
    V. K. Trunov and L. M. Kovba, Zh. Strukt. Khim. 7(6), 896 (1966).Google Scholar
  52. 52.
    A. R. Chakhmouradiana, R. H. Mitchella, and P. C. Burnsb, J. Alloys Compd. 307, 149 (2000).CrossRefGoogle Scholar
  53. 53.
    H. Yoop, J. Korean Ceram. Soc. 32, 582 (1995).Google Scholar
  54. 54.
    J. Li, M. A. Subramanian, H. D. Rosenfeld, et al., Chem. Mater. 16, 5223 (2004).CrossRefGoogle Scholar
  55. 55.
    C. C. Homes, T. Vogt, S. M. Shapiro, et al., Phys. Rev. B 67, 092106 (2003).CrossRefADSGoogle Scholar
  56. 56.
    Y. Xin, H. D. Zhou, J. G. Cheng, et al., Ultramicroscopy 127, 94 (2013).CrossRefGoogle Scholar
  57. 57.
    A. Deschanvres, B. Raveau, and F. Tollemer, Bull. Soc. Chim. Fr. 4077 (1967).Google Scholar
  58. 58.
    S. G. Steward and H. P. Rooksby, Acta Crystallogr. 4, 503 (1951).CrossRefGoogle Scholar
  59. 59.
    G. Blasse, J. Inorg. Nucl. Chem. 27, 993 (1965).CrossRefGoogle Scholar
  60. 60.
    U. Amador, C. J. D. Hetherington, E. Moran, and M. A. Alario-Franco, J. Solid State Chem. 90, 132 (1992).CrossRefADSGoogle Scholar
  61. 61.
    M. ValletoRegi, E. Garcia, and Gonzalez-Calbet, J. Mater. Chem. Soc.; Dalton Trans. 3, 775 (1988).CrossRefGoogle Scholar
  62. 62.
    B. C. Filip’ev and E. G. Fesenko, Kristallografiya 10(2), 297 (1965).Google Scholar
  63. 63.
    A. J. Jacobson, B. M. Collins, and B. E. F. Fender, Acta Crystallogr. B 30, 1705 (1974).CrossRefGoogle Scholar
  64. 64.
    H. B. Krause and D. L. Gibbon, Z. Kristallogr. 134(1–2), 44 (1971).CrossRefGoogle Scholar
  65. 65.
    M. Akbas and P. K. Davies, J. Am. Ceram. Soc. 80(11), 2933 (1997).CrossRefGoogle Scholar
  66. 66.
    Y. Yan, S. J. Pennycook, Z. Xu, and D. Viehland, Appl. Phys. Lett. 72(24), 3145 (1998).CrossRefADSGoogle Scholar
  67. 67.
    M. A. Akbas, L. Chai, P. K. Davies, and J. Parise, Mater. Res. Bull. 32(9), 1261 (1997).CrossRefGoogle Scholar
  68. 68.
    K.-I. Kobayashi, T. Kimura, H. Sawada, et al., Nature 395, 677 (1998).CrossRefADSGoogle Scholar
  69. 69.
    B. Jancarw, J. Bezjak, and P. K. Davies, J. Am. Ceram. Soc. 93(3), 758 (2010).CrossRefGoogle Scholar
  70. 70.
    F. Chu, N. Setter, and A. K. Tagantsev, J. Appl. Phys. 74, 5129 (1993).CrossRefADSGoogle Scholar
  71. 71.
    A. Alonso, E. Mzayek, and I. Rasines, Mater. Res. Bull. 22, 69 (1987).CrossRefGoogle Scholar
  72. 72.
    M. A. Subramanian, J. Solid State Chem. 111, 134 (1994).CrossRefADSGoogle Scholar
  73. 73.
    A. J. Jacobson, B. M. Collins, and B. E. F. Fender, Acta Crystallogr. B 30, 1705 (1974).CrossRefGoogle Scholar
  74. 74.
    J. A. Alonso, E. Mzayek, and I. Rasines, J. Solid State Chem. 84, 16 (1990).CrossRefADSGoogle Scholar
  75. 75.
    Q. Zhou, B. J. Kennedy, M. M. Elcombe, and R. L. Withers, J. Solid State Chem. 180, 3082 (2007).CrossRefADSGoogle Scholar
  76. 76.
    C. Greaves and P. R. Slater, Solid State Commun. 73, 629 (1990).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • V. M. Talanov
    • 1
  • M. V. Talanov
    • 1
  • V. B. Shirokov
    • 2
    • 3
  1. 1.South-Russian State Technical UniversityNovocherkasskRussia
  2. 2.Southern Federal UniversityRostov-on-DonRussia
  3. 3.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia

Personalised recommendations