Skip to main content
Log in

Efficiency of dislocations as sinks of radiation defects in fcc copper crystal

  • Physical Properties of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The sink efficiency of perfect dislocations for self-point defects (interstitials and vacancies) in fcc copper crystal has been calculated by the kinetic Monte Carlo method in a temperature range of 293–1000 K and a range of dislocation densities from 1.3 × 1012 to 3.0 × 1014 m−2. Screw, mixed, and edge dislocations with a Burgers vector 1/2<110> in different slip systems are analyzed. The interaction energies of self-point defects with dislocations are calculated using the anisotropic theory of elasticity. Analytical expressions are proposed for the dependences of the calculated values of dislocation sink efficiency on temperature and dislocation density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elastic Strain Fields and Dislocation Mobility, Ed. by V. L. Indenbom and J. Lothe (North-Holland, Amsterdam, 1992).

    Google Scholar 

  2. A. B. Sivak, V. M. Chernov, N. A. Dubasova, and V. A. Romanov, J. Nucl. Mater. 367–370, 316 (2007).

    Article  Google Scholar 

  3. A. B. Sivak, V. M. Chernov, and V. A. Romanov, Crystallogr. Rep. 55(1), 97 (2010).

    Article  ADS  Google Scholar 

  4. P. Ehrhart, K. H. Robrock, and H. R. Schober, Physics of Radiation Effects in Crystals, Ed. by R. A. Johnson and A. N. Orlov (Elsevier, Amsterdam, 1986), p. 3.

  5. W. G. Wolfer, J. Comput.-Aided Mater. Des. 14, 403 (2007).

    Article  ADS  Google Scholar 

  6. M. J. Caturla, N. Soneda, E. Alonso, et al., J. Nucl. Mater. 276, 13 (2000).

    Article  ADS  Google Scholar 

  7. M. J. Caturla, N. Soneda, T. Diaz de la Rubia, and M. Fluss, J. Nucl. Mater. 351, 78 (2006).

    Article  ADS  Google Scholar 

  8. R. E. Stoller, S. I. Golubov, C. Domain, and C. S. Bec- quart, J. Nucl. Mater. 382, 77 (2008).

    Article  ADS  Google Scholar 

  9. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968).

    Google Scholar 

  10. V. E. Zinov’ev, Handbook of Thermophysical Properties of Metals at High Temperatures (Metallurgiya, Moscow, 1989) [in Russian].

    Google Scholar 

  11. C. Domain, C. S. Becquart, and L. Malerba, J. Nucl. Mater. 335, 121 (2004).

    Article  ADS  Google Scholar 

  12. M. J. Caturla, T. Diaz de la Rubia, and M. Fluss, J. Nucl. Mater. 323, 163 (2003).

    Article  ADS  Google Scholar 

  13. E. Kröner, Arch. Rational Mech. Anal. 4, 18 (1960).

    Google Scholar 

  14. Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, et al., Phys. Rev. B 63, 224106 (2001).

    Article  ADS  Google Scholar 

  15. M. P. Puls and C. H. Woo, J. Nucl. Mater. 139, 48 (1986).

    Article  ADS  Google Scholar 

  16. G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge, MA, 1977).

    Google Scholar 

  17. A. B. Sivak, V. M. Chernov, V. A. Romanov, and P. A. Sivak, J. Nucl. Mater. 417, 1067 (2011).

    Article  ADS  Google Scholar 

  18. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, et al., J. Chem. Phys. 21, 1087 (1953).

    Article  ADS  Google Scholar 

  19. W. M. Young and E. W. Elcock, Proc. Phys. Soc. 89, 735 (1966).

    Article  ADS  Google Scholar 

  20. H. L. Heinisch, B. N. Singh, and S. I. Golubov, J. Nucl. Mater. 283–287, 737 (2000).

    Article  Google Scholar 

  21. L. Malerba, C. S. Becquart, and C. Domain, J. Nucl. Mater. 360, 159 (2007).

    Article  ADS  Google Scholar 

  22. V. L. Indenbom, V. I. Al’shits, and V. M. Chernov, Defects in Crystals and Their Computer Simulation (Nauka, Leningrad, 1980) [in Russian], p. 23.

    Google Scholar 

  23. W. Wiedersich, Radiat. Eff. 12, 111 (1972).

    Article  Google Scholar 

  24. F. A. Nichols, J. Nucl. Mater. 75, 32 (1978).

    Article  ADS  Google Scholar 

  25. V. M. Chernov and M. M. Savin, Phys. Status Solidi A 47, 45 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Sivak.

Additional information

Original Russian Text © A.B. Sivak, P.A. Sivak, 2014, published in Kristallografiya, 2014, Vol. 59, No. 3, pp. 451–459.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivak, A.B., Sivak, P.A. Efficiency of dislocations as sinks of radiation defects in fcc copper crystal. Crystallogr. Rep. 59, 407–414 (2014). https://doi.org/10.1134/S1063774514030183

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774514030183

Keywords

Navigation