Skip to main content
Log in

Enhancement of Raman scattering in Subwave plasmonic nanostructures formed by ion-beam lithography

  • Surface and Thin Films
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Subwave gratings with optimized architecture corresponding to the spectral position of resonances at desired wavelengths have been fabricated by ion-beam lithography. The structural and optical properties of the nanostructures have been studied. It is shown that experimental transmission (reflection) spectra are in good agreement with the theoretical spectra calculated within the grating-eigenmode model. An analysis of the Raman scattering of molecules adsorbed on the surface of gratings with optimized architecture demonstrates an increase in the Raman signal intensity from these molecules by four orders of magnitude. Highly sensitive sensors and various elements of optoelectronics can be developed based on these nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Cai and V. Shalaev, Optical Metamaterials. Fundamentals and Applications (Springer, New York, 2010), p. 200.

    Google Scholar 

  2. M. I. Stockman, Opt. Express 19, 22029 (2011).

    Article  ADS  Google Scholar 

  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).

    Article  ADS  Google Scholar 

  4. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, et al., Rep. Prog. Phys. 70, 1 (2007).

    Article  ADS  Google Scholar 

  5. Y. Chen and H. Ming, Photonic Sensors 2, 37 (2012).

    Article  ADS  Google Scholar 

  6. D. A. Mamichev, I. A. Kuznetsov, and N. E. Maslova, Mol. Meditsina, No. 6, 19 (2012).

    Google Scholar 

  7. B. Sharma, R. R. Frontiera, A.-I. Henry, et al., Mater. Today. 15, 16 (2012).

    Article  Google Scholar 

  8. E. D. Palik, Handbook of Optical Constants of Solids III (Academic, New York, 1998), p. 999.

    Google Scholar 

  9. M. Fana, G. F. S. Andradec, and A. G. Brolod, Anal. Chim. Acta 693, 7 (2011).

    Article  Google Scholar 

  10. A. V. Andreev, Yu. V. Grishchenko, M. I. Dobynde, et al., Pis’ma v ZhETF 92(11), 823 (2010) [JETP Lett. 92 (11), 742 (2010)].

    Google Scholar 

  11. I. A. Chernykh, D. A. Mamichev, Yu. V. Grishchenko, et al., Poverkhnost, No. 10, 29 (2011).

    Google Scholar 

  12. L. Tong, T. Zhu, and Z. Liu, Chem. Soc. Rev. 40, 1296 (2011).

    Article  Google Scholar 

  13. A. A. Andreev, A. A. Korneev, L. S. Mukina, et al., Kvantovaya Elektron. 35(11), 27 (2005).

    Article  Google Scholar 

  14. A. A. Andreev, A. A. Konovko, and I. R. Prudnikov, Poverkhnost, No. 11, 11 (2009).

    Google Scholar 

  15. A. V. Andreev, A. A. Korneev, L. S. Mukina, et al., Phys. Rev. B 74, 235421 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Mamichev.

Additional information

Original Russian Text © D.A. Mamichev, I.A. Kuznetsov, A.V. Andreev, A.A. Konovko, V.A. Drynkin, I.S. Smirnov, 2014, published in Kristallografiya, 2014, Vol. 59, No. 1, pp. 137–144.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamichev, D.A., Kuznetsov, I.A., Andreev, A.V. et al. Enhancement of Raman scattering in Subwave plasmonic nanostructures formed by ion-beam lithography. Crystallogr. Rep. 59, 125–131 (2014). https://doi.org/10.1134/S1063774514010088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774514010088

Keywords

Navigation