Crystallography Reports

, Volume 59, Issue 1, pp 75–77 | Cite as

Preliminary X-ray diffraction study of crystals of photosystem II from Thermosynechococcus elongates

  • A. G. Gabdulkhakov
  • M. V. Dontsova
Structure of Macromolecular Compounds


Photosystem II (PSII) is a multicomponent enzyme complex that catalyzes the light-induced water splitting to molecular oxygen, protons, and electrons. Photosystem II is located in the membranes of cyanobacteria, green algae, and plants. The crystallization of this complex from the thylakoid membranes poses great difficulties. The high sensitivity of photosystem II to light and radiation has an adverse effect on the crystal quality, as well as on the quality of X-ray diffraction data. This is the reason why the crystal structure of PSII from Thermosynechococcus elongates has as yet not been determined at high resolution. The optimization of the strategy for collecting X-ray diffraction data from PSII crystals has resulted in an increase in the resolution to 2.75 Å, which made it possible to determine the positions of ions and some water molecules playing an important role in the functioning of PSII.


Crystallography Report Oscillation Angle Diffraction Data Collection Crystal Damage Molecular Replacement Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Kern, B. Loll, C. Lüneberg, et al., Biochim. Biophys. Acta 1706, 147 (2005).CrossRefGoogle Scholar
  2. 2.
    A. G. W. Leslie and H. R. Powell, Evolving Methods Macromol. Crystallogr. 245, 41 (2007).CrossRefGoogle Scholar
  3. 3.
    W. Kabsch, J. Appl. Crystallogr. 26, 795 (1993).CrossRefGoogle Scholar
  4. 4.
    A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, et al., J. Appl. Crystallogr. 40, 658 (2007).CrossRefGoogle Scholar
  5. 5.
    E. Potterton, P. Briggs, M. Turkenburg, et al., Acta Crystallogr. D 59, 1131 (2003).CrossRefGoogle Scholar
  6. 6.
    A. Guskov, J. Kern, A. Gabdulkhakov, et al., Nat. Struct. Mol. Biol. 16, 334 (2009).CrossRefGoogle Scholar
  7. 7.
    P. V. Afonine, R. W. Grosse-Kunstleve, N. Echols, et al., Acta Crystallogr. D 68, 352 (2012).CrossRefGoogle Scholar
  8. 8.
    P. Emsley, B. Lohkamp, W. G. Scott, et al., Acta Crystallogr. D 66, 486 (2010).CrossRefGoogle Scholar
  9. 9.
    R. A. Laskowski, M. W. MacArthur, D. S. Moss, et al., J. Appl. Crystallogr. 26, 283 (1993).CrossRefGoogle Scholar
  10. 10.
    R. W. Hooft, G. Vriend, C. Sander, et al., Nature 381, 272 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    A. G. Gabdulkhakov, M. V. Dontsova, and W. Saenger, Crystallogr. Rep. 56, 1054 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    K. Kawakami, Y. Umena, N. Kamiya, et al., Proc. Natl. Acad. Sci. USA 106, 8567 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    J. W. Murray, Energy Environ. Sci. 1, 161 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow regionRussia

Personalised recommendations