Skip to main content
Log in

Chemical Processes in Al2O3-Mo and Al2O3-W systems in a weakly reducing atmosphere

  • Crystal Growth
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Al2O3-Mo and Al2O3-W systems in a controlled Ar(95%) + H2(5%) atmosphere at T = 2400 K and P = 1 bar have been calculated by the Monte Carlo method. It is established that the presence of hydrogen in these systems leads to the occurrence of OH, H2O2, HO2, H2O, AlOH, AlOOH, AlH, AlH2, and AlH3 components in the gas phase; aluminum hydrides are formed only through the interaction of hydrogen with melt evaporation products. The presence of reducing medium leads to a decrease in the free oxygen concentration by one to two orders of magnitude, which is expected to improve the quality of sapphire crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. R. Dobrovinskaya, V. V. Pishchik, and L. A. Litvinov, Encyclopedia of Saphire (Institut monokristallov, Kharkov, 2004) [in Russian].

    Google Scholar 

  2. Kh. S. Bagdasarov and L. A. Goryainov, Heat- and Mass Transfer during Single-Crystal Growth by Directional Solidification (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  3. A. Ya. Dan’ko, V. M. Puzikov, V. P. Seminozhenko, and N. S. Sidel’nikova, Technological Bases of Sapphire Growth under Reducing Conditions (ISMA, Kharkiv, 2009) [in Russian].

    Google Scholar 

  4. D. V. Kostomarov, Kh. S. Bagdasarov, S. A. Kobzareva, and E. V. Antonov, Crystallogr. Rep. 58(4), 663 (2008).

    Article  ADS  Google Scholar 

  5. D. V. Kostomarov, Kh. S. Bagdasarov, and E. V. Anto- nov, Dokl. Akad. Nauk 431(6), 766 (2010).

    Google Scholar 

  6. W. B. White, S. M. Jonson, and G. B. Dantzig, J. Chem. Phys. 28(5), 751 (1958).

    Article  ADS  Google Scholar 

  7. I. K. Karpov, A. I. Kiselev, and F. A. Letnikov, Chemical Thermodynamics in Petrology and Geochemistry (Izd-vo SO AN SSSR, Irkutsk, 1971) [in Russian].

    Google Scholar 

  8. A. I. Shapkin and Yu. I. Sidorov, Thermodynamical Models in Cosmochemistry and Planetology (Editorial URSS, Moscow, 2004) [in Russian].

    Google Scholar 

  9. A. V. Garanin and A. I. Shapkin, Geokhimiya, No. 11, 1775 (1984).

    Google Scholar 

  10. M. Kh. Karapet’yants, Introduction into the Theory of Chemical Processes (MGU, Moscow, 1992).

    Google Scholar 

  11. Kh. S. Bagdasarov, High-Temperature Crystallization from Melt (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  12. R. A. Robie and D. R. Waldbaum, Thermodynamic Properties of Minerals and Related Substances at 298.15 K (25°C) and One-Atmosphere (1.013 bars) Pressure and at Higher Temperatures (Academic, Washington, 1968).

    Google Scholar 

  13. R. S. Kuyunko, C. D. Malinin, and I. L. Khodakovskii, Geokhimiya, No. 3, 419 (1982).

    Google Scholar 

  14. D. V. Kostomarov, Rasplavy, No. 1, 43 (2011).

    Google Scholar 

  15. I. S. Kulikov, Thermodynamics of Oxides (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  16. Kh. S. Bagdasarov, J. Adv. Mater. 1(2), 173 (1994).

    Google Scholar 

  17. I. S. Kulikov, Thermal Dissociation of Compounds (Metallurgiya, Moscow, 1966) [in Russian].

    Google Scholar 

  18. L. B. Pankratz, Thermodynamic Properties of Elements and Oxides (U.S. Bur. Mines, 1982, No. 672).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Fedorov.

Additional information

Original Russian Text © V.A. Fedorov, D.V. Kostomarov, E.V. Antonov, 2014, published in Kristallografiya, 2014, Vol. 59, No. 1, pp. 145–150.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, V.A., Kostomarov, D.V. & Antonov, E.V. Chemical Processes in Al2O3-Mo and Al2O3-W systems in a weakly reducing atmosphere. Crystallogr. Rep. 59, 132–136 (2014). https://doi.org/10.1134/S1063774513060102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774513060102

Keywords

Navigation