Skip to main content
Log in

Accurate crystal-structure refinement of Ca3Ga2Ge4O14 at 295 and 100 K and analysis of the disorder in the atomic positions

  • Structure of Inorganic Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The accurate X-ray diffraction study of a Ca3Ga2Ge4O14 crystal (sp. gr. P321, Z = 1) has been performed using repeated X-ray diffraction data sets collected on a diffractometer equipped with a CCD area detector at 295 and 100 K. The asymmetric disorder in the atomic positions in Ca3Ga2Ge4O14 is described in two alternative ways: with the use of anharmonic atomic displacements (at 295 K R/wR = 0.68/0.60%, 3754 reflections; at 100 K R/wR = 0.90/0.70%, 3632 reflections) and using a split model (SM) (at 295 K R/wR = 0.74/0.67%; at 100 K R/wR = 0.95/0.74%). An analysis of the probability density function that defines the probability of finding an atom at a particular point in space shows that, at 295 K, five of the seven independent atoms in the unit cell are asymmetrically disordered in the vicinity of their sites, whereas only three atoms are disordered at 100 K. At both temperatures the largest disorder is observed at the 3f site on a twofold axis, which is a prerequisite for the formation of helicoidal chains of atoms along the c axis of the crystal and can serve as a structural basis for multiferroic properties of this family of crystals with magnetic ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Belokoneva and N. V. Belov, Sov. Phys.Dokl. 260(6), 1363 (1981).

    Google Scholar 

  2. B. V. Mill and Yu. V. Pisarevsky, Proc. IEEE/EIA Intern. Frequency Control Symp, Kansas City, Missouru, USA, 2000, p. 133.

  3. B. V. Mill’, A. A. Klimenkova, B. A. Maksimov, et al., Crystallogr. Rep. 520(5), 785 (2007).

    Article  ADS  Google Scholar 

  4. A. A. Kaminskii, E. L. Belokoneva, B. V. Mill’, et al., Phys. Status Solidi A 86, 345 (1984).

    Article  ADS  Google Scholar 

  5. K. A. Kaldybaev, A. F. Konstantinova, and Z. B. Perekalina, Gyrotropy of Uniaxial Absorbing Crystals (Izd-vo ISPIN, Moscow, 2000) [in Russian].

    Google Scholar 

  6. J. Robert, V. Simonet, R. Ballou, et al., Phys. Rev. Lett. 96, 197205 (2006).

    Article  ADS  Google Scholar 

  7. A. Zorko, F. Bert, P. Mendels, et al., Phys. Rev. Lett. 100, 147201 (2008).

    Article  ADS  Google Scholar 

  8. K. Marty, P. Bordet, V. Simonet, et al., Phys. Rev. B 81, 054416 (2010).

    Article  ADS  Google Scholar 

  9. I. S. Lyubutin, P. G. Naumov, and B. V. Mill’, Europhys. Lett. 90, 67005 (2010).

    Article  ADS  Google Scholar 

  10. B. A. Maksimov, V. N. Molchanov, B. V. Mill’, et al., Crystallogr. Rep. 50(5), 751 (2005).

    Article  ADS  Google Scholar 

  11. A. P. Dudka, R. Chitra, R. R. Choudhury, et al., Crystallogr. Rep. 55(6), 1060 (2010).

    Article  ADS  Google Scholar 

  12. A. P. Dudka, B. V. Mill, and Yu. V. Pisarevsky, Crystallogr. Rep. 54(4), 558 (2009).

    Article  ADS  Google Scholar 

  13. E. L. Belokoneva, A. V. Butashin, M. A. Simonov, et al., Dokl. Akad. Nauk SSSR 25(12), 954 (1980).

    Google Scholar 

  14. A. Dudka, J. Appl. Crystallogr. 40, 602 (2007).

    Article  MathSciNet  Google Scholar 

  15. A. P. Dudka, M. Kh. Rabadanov, and A. A. Loshmanov, Sov. Phys. Crystallogr. 34(4), 490 (1989).

    Google Scholar 

  16. A. P. Dudka, Crystallogr. Rep. 50(6), 1068 (2005).

    Article  ADS  Google Scholar 

  17. A. Dudka, J. Appl. Crystallogr. 43(6), 1440 (2010).

    Article  Google Scholar 

  18. P. J. Becker and P. Coppens, Acta Crystallogr. A 30, 129 (1974).

    Article  ADS  Google Scholar 

  19. Y. le Page and E. J. Gabe, J. Appl. Crystallogr. 11, 254 (1978).

    Article  Google Scholar 

  20. A. Dudka, J. Appl. Crystallogr. 43, 27 (2010).

    Article  Google Scholar 

  21. A. Dudka, J. Appl. Crystallogr. 41, 83 (2008).

    Article  Google Scholar 

  22. W. C. Hamilton, Acta Crystallogr. 18, 502 (1965).

    Article  Google Scholar 

  23. S. C. Abrahams and E. T. Keve, Acta Crystallogr. A 27, 1157 (1971).

    Article  ADS  Google Scholar 

  24. A. P. Dudka, Crystallogr. Rep. 47(1), 152 (2002).

    Article  ADS  Google Scholar 

  25. Z. Su and P. Coppens, Acta Crystallogr. A 54, 646 (1998).

    Article  Google Scholar 

  26. V. Petricek and M. Dusek, JANA2006. The Crystallographic Computing System (Institute of Physics, Prague, 2006).

    Google Scholar 

  27. H. D. Flack, Acta Crystallogr. A 39, 876 (1983).

    Article  Google Scholar 

  28. A. P. Dudka and B. V. Mill, Crystallogr. Rep. 57(1), 131 (2012).

    Article  ADS  Google Scholar 

  29. A. P. Dudka and B. V. Mill’, Crystallogr. Rep. 56(3), 443 (2011).

    Article  ADS  Google Scholar 

  30. A. P. Dudka, Doctoral Dissertation in Physics and Mathematics (Institute of Crystallography, Russian Academy of Sciences, Moscow, 1978).

    Google Scholar 

  31. K. Robinson, J. V. Gibbs, and P. H. Ribbe, Science 172, 567 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Dudka.

Additional information

Original Russian Text © A.P. Dudka, B.V. Mill’, 2013, published in Kristallografiya, 2013, Vol. 58, No. 4, pp. 593–602.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudka, A.P., Mill’, B.V. Accurate crystal-structure refinement of Ca3Ga2Ge4O14 at 295 and 100 K and analysis of the disorder in the atomic positions. Crystallogr. Rep. 58, 594–603 (2013). https://doi.org/10.1134/S1063774513040081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774513040081

Keywords

Navigation