Skip to main content
Log in

Effect of high-energy electron irradiation in an electron microscope column on fluorides of alkaline earth elements (CaF2, SrF2, and BaF2)

  • Nanomaterials
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The effect of high-energy (150 eV) electron irradiation in an electron microscope column on crystals of fluorides of alkaline earth elements CaF2, SrF2, and BaF2 is studied. During structural investigations by electron diffraction and electron microscopy, the electron irradiation causes chemical changes in MF2 crystals such as the desorption of fluorine and the accumulation of oxygen in the irradiated area with the formation of oxide MO. The fluorine desorption rate increases significantly when the electron-beam density exceeds the threshold value of ∼2 × 103 pA/cm2). In BaF2 samples, the transformation of BaO into Ba(OH)2 was observed when irradiation stopped. The renewal of irradiation is accompanied by the inverse transformation of Ba(OH)2 into BaO. In the initial stage of irradiation of all MF2 compounds, the oxide phase is in the single-crystal state with a lattice highly matched with the MF2 matrix. When the irradiation dose is increased, the oxide phase passes to the polycrystalline phase. Gaseous products of MF2 destruction (in the form of bubbles several nanometers in diameter) form a rectangular array with a period of ∼20 nm in the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Sobolev, The Rare Earth Trifluorides, Part 1: The High Temperature Chemistry of Rare Earth Trifluorides (Institute of Crystallography, Moscow, Institut d’Estudis Catalons, Barcelona, 2000).

    Google Scholar 

  2. B. P. Sobolev, The Rare Earth Trifluorides, Part 2: Introduction to Materials Science of Multicomponent Metal Fluoride Crystals (Institute of Crystallography, Moscow, Institut d’Estudis Catalans, Barcelona, 2001).

    Google Scholar 

  3. B. P. Sobolev, A. M. Golubev, and P. Errero, Crystallogr. Rep. 48(1), 141 (2003).

    Article  ADS  Google Scholar 

  4. E. A. Sul’yanova, A. P. Shcherbakov, V. N. Molchanov, et al., Crystallogr. Rep. 50(2), 203 (2005).

    Article  ADS  Google Scholar 

  5. B. A. Maksimov, Yu. B. Gubina, E. L. Belokoneva, et al., Crystallogr. Rep. 47(3), 372 (2002).

    Article  ADS  Google Scholar 

  6. O. Greis and J. M. Haschke, Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gscheidner and L. R. Eyring (North-Holland, Amsterdam, 1982), Vol. 5, Ch. 45, p. 387.

    Google Scholar 

  7. R. Munos, R. Rojas, B. P. Sobolev, and P. Herrero, Proc. 29th Reunion Bienal Soc. Espanola de Microscopia, Murcia, Spain, Ed. by M. A. Sanchez-Pina (1999), p. 317.

  8. A. Muray, M. Isaacson, and I. Adesida, Appl. Phys. Lett. 4, 589 (1984).

    Article  ADS  Google Scholar 

  9. A. Sherer and H. G. Craighead, J. Vac. Sci. Technol. B 5, 374 (1987).

    Article  Google Scholar 

  10. M. L. Knotek and P. J. Fielbelman, Surf. Sci. 90, 78 (1979).

    Article  ADS  Google Scholar 

  11. J. C. Warf, W. D. Cline, and R. D. Tevebaugh, Anal. Chem. 26(2), 2342 (1954).

    Article  Google Scholar 

  12. B. P. Sobolev, Crystallogr. Rep. 47(Suppl. 1), 63 (2002).

    Article  ADS  Google Scholar 

  13. P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan, Electron Microscopy of Thin Crystals (Butterworth, London, 1965).

    Google Scholar 

  14. A. Avilov, K. Kuligin, S. Nicolopoulos, et al., Ultramicroscopy 107, 431 (2007).

    Article  Google Scholar 

  15. J.-P. Morniroli, Large-Angle Convergent-Beam Electron Diffraction (Sociéte Française des Microscopies, Paris, 2002).

    Google Scholar 

  16. J. C. H. Spence, Experimental High Resolution Electron Microscopy (Claredon, Oxford, 1981).

    Google Scholar 

  17. W. Bontinck, Philos. Mag. 2(16), 561 (1957).

    Article  ADS  Google Scholar 

  18. V. I. Nikolaichik, Philos. Mag. 68, 227 (1993).

    Article  ADS  Google Scholar 

  19. W. L. Phillips and J. E. Hanlon, J. Am. Ceram. Soc. 46(9), 447 (1963).

    Article  Google Scholar 

  20. W. Bardsley and G. W. Green, Brit. J. Appl. Phys. 16(6), 911 (1965).

    Article  ADS  Google Scholar 

  21. A. M. Aronova and G. V. Berezkova, Krist. Tech. 14(2), 173 (1979).

    Article  Google Scholar 

  22. A. M. Aronova and G. V. Berezkova, Krist. Tech. 15(5), K39 (1980).

    Article  Google Scholar 

  23. S. K. Maksimov, F. S. Avilov, B. P. Sobolev, and P. Errero, Proc. IX Russ. Conf. on Electron Microscopy, Chernogolovka, 2002, p. 162.

  24. S. K. Maksimov, A. S. Avilov, B. P. Sobolev, and P. Errero, Zavod. Lab., Diagn. Mater. 69(10), 24 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Sobolev.

Additional information

Original Russian Text © V.I. Nikolaichik, B.P. Sobolev, M.A. Zaporozhets, A.S. Avilov, 2012, published in Kristallografiya, 2012, Vol. 57, No. 2, pp. 348–356.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaichik, V.I., Sobolev, B.P., Zaporozhets, M.A. et al. Effect of high-energy electron irradiation in an electron microscope column on fluorides of alkaline earth elements (CaF2, SrF2, and BaF2). Crystallogr. Rep. 57, 299–307 (2012). https://doi.org/10.1134/S1063774512010087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774512010087

Keywords

Navigation