Skip to main content
Log in

Charge and spin topological insulators

  • Physical Properties of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The topologically nontrivial states of matter—charge and spin topological insulators, which exhibit, respectively, properties of the integer quantum Hall effect and the quantum spin Hall effect—are discussed. The topological characteristics (invariant with respect to weak adiabatic changes in the Hamiltonian parameters) which lead to such states are considered. The model of a 2D hexagonal lattice having symmetries broken with respect to time reversal and spatial inversion which was proposed by Haldane and marked the beginning of unprecedented activity in the study of topologically nontrivial states is discussed. This model relates the microscopic nature of the symmetry breaking with respect to the time reversal to the occurrence of spontaneous orbital currents which circulate within a unit cell. Such currents become zero upon summation over the unit cell, but they may form spreading current states at the surface which are similar to the edge current states under the quantum Hall effect. The first model of spontaneous currents (exciton insulator model) is considered, and the possibility of implementing new topologically nontrivial states in this model is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bloch, Z. Phys. 52, 555 (1928).

    ADS  Google Scholar 

  2. A. H. Wilson, Proc. R. Soc. London, Ser. A 133, 458 (1931); 134, 277 (1931).

    Article  ADS  Google Scholar 

  3. K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

    Article  ADS  Google Scholar 

  4. R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).

    Article  ADS  Google Scholar 

  5. B. I. Halperin, Phys. Rev. B 25, 2185 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  6. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).

    Article  ADS  Google Scholar 

  7. L. D. Landau, Zh. Eksp. Teor. Fiz. 7, 19, 627 (1937).

    Google Scholar 

  8. W. Kohn, Phys. Rev. A 133, 171 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  9. Y. Hatsugai, Phys. Rev. B 48, 11851 (1993).

    Article  ADS  Google Scholar 

  10. Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984).

    Article  ADS  MATH  Google Scholar 

  12. R. Resta, Eur. Phys. J. B 79, 121 (2011).

    Article  ADS  Google Scholar 

  13. S. I. Vinitskii, V. L. Derbov, V. M. Dubovik, et al., Usp. Fiz. Nauk 160, 1 (1990).

    Article  MathSciNet  Google Scholar 

  14. D. N. Klyshko, Usp. Fiz. Nauk 163, 1 (1993).

    Article  Google Scholar 

  15. G. E. Volovik, Sov. Phys. JETP 67, 1804 (1988).

    Google Scholar 

  16. G. E. Volovik, The Universe in a Helium Droplet (Oxford Univ. Press, USA, 2003).

    MATH  Google Scholar 

  17. Q. Niu, D. J. Thouless, and Y-S. Wu, Phys. Rev. B 31, 3372 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  18. S-C. Zhang, T. H. Hanson, and S. A. Kivelson, Phys. Rev. Lett. 62, 82 (1989).

    Article  ADS  Google Scholar 

  19. X-G. Wen, Adv. Phys. 44, 405 (1995).

    Article  ADS  Google Scholar 

  20. F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  21. V. M. Yakovenko, Phys. Rev. Lett. 65, 251 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. M. Taillefumier, V. K. Dugaev, B. Canals, et al., Phys. Rev. B 78, 155 330 (2008).

    Article  Google Scholar 

  23. L. V. Keldysh and Yu. V. Kopaev, Sov. Phys. Solid State 6, 2219 (1964).

    Google Scholar 

  24. B. A. Volkov, A. A. Gorbatsevich, Yu. V. Kopaev, and V. V. Tugushev, Sov. Phys. JETP 54, 391 (1981).

    Google Scholar 

  25. V. L. Ginzburg, A. A. Gorbatsevich, Yu. V. Kopaev, and B. A. Volkov, Solid State Commun. 50, 339 (1984).

    Article  ADS  Google Scholar 

  26. Yu. V. Kopaev, Usp. Fiz. Nauk 179, 1175 (2009).

    Article  Google Scholar 

  27. A. A. Gorbatsevich, Sov. Phys. JETP 68, 847 (1989).

    Google Scholar 

  28. B. I. Halperin and T. M. Rice, Solid State Phys. 21, 115 (1968).

    Article  Google Scholar 

  29. V. M. Dubovik and V. V. Tugushev, Phys. Rep. 187, 145 (1990).

    Article  ADS  Google Scholar 

  30. A. A. Gorbatsevich, V. V. Kapaev, and Yu. V. Kopaev, Ferroelectrics 161, 303 (1994).

    Article  Google Scholar 

  31. S. Raghu, X.-L. Qi, C. Honercamp, and S.-C. Zhang, Phys. Rev. Lett. 100, 156 401 (2008).

    Article  Google Scholar 

  32. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802, 226801 (2005).

    Article  ADS  Google Scholar 

  33. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  34. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  35. M. I. D’yakonov and V. I. Perel’, JETP Lett. 13, 467 (1971).

    ADS  Google Scholar 

  36. M. I. Dyakonov and V. I. Perel, Phys. Lett. A 35, 459 (1971).

    Article  ADS  Google Scholar 

  37. Y. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Science 306, 1910 (2004).

    Article  ADS  Google Scholar 

  38. J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys. Rev. Lett. 94, 047 204 (2005).

    Article  Google Scholar 

  39. B. A. Bernevig, T. L. Hughes, and S-C. Zhang, Science 314, 1757 (2006).

    Article  ADS  Google Scholar 

  40. M. Konig, S. Wiedmann, C. Brüne, et al., Science 318, 766 (2007).

    Article  ADS  Google Scholar 

  41. L. Fu and C. L. Kane, Phys. Rev. B 76, 045 302 (2007).

    Article  Google Scholar 

  42. D. Hsieh, D. Qian, L. Wray, et al., Nature 452, 970 (2008).

    Article  ADS  Google Scholar 

  43. A. A. Gorbatsevich and Yu. V. Kopaev, JETP Lett. 39, 684 (1984).

    ADS  Google Scholar 

  44. A. A. Gorbatsevich, V. V. Kapaev, and Yu. V. Kopaev, JETP Lett. 57, 580 (1993).

    ADS  Google Scholar 

  45. A. A. Gorbatsevich, O. E. Omel’yanovskii, and V. I. Tsebro, Usp. Fiz. Nauk 179, 887 (2009).

    Google Scholar 

  46. D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, Phys. Rev. Lett. 97, 036 808 (2006).

    Article  Google Scholar 

  47. L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106 803 (2007).

    Article  Google Scholar 

  48. B.-J. Yang and H.-Y. Kee, Phys. Rev. B 82, 195 126 (2010).

    Google Scholar 

  49. K. Sun and E. Fradkin, Phys. Rev. B 78, 245 122 (2008).

    Google Scholar 

  50. S. Kai, Y. Hong, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett. 103, 046 811 (2009).

    Google Scholar 

  51. B. A. Volkov, A. A. Gorbatsevich, and Yu. V. Kopaev, Usp. Fiz. Nauk 143, 331 (1984).

    Article  Google Scholar 

  52. B. A. Volkov, Yu. V. Kopaev, and M. S. Nunuparov, Sov. Phys. Solid State 21, 1571 (1979).

    Google Scholar 

  53. Yu. V. Kopaev and M. S. Nunuparov, Sov. Phys. Solid State 22, 2108 (1980).

    Google Scholar 

  54. A. A. Gorbatsevich, Yu. V. Kopaev, and V. I. Prokopov, Sov. Phys. Solid State 26, 645 (1986).

    Google Scholar 

  55. B. A. Volkov, V. G. Kantser, and Yu. V. Kopaev, Sov. Phys. JETP 49, 943 (1979).

    ADS  Google Scholar 

  56. S. Tewari, S. Das Sarma, C. Nayak, et al., Phys. Rev. Lett. 98, 010506 (2007).

    Article  ADS  Google Scholar 

  57. G. E. Volovik, JETP Lett. 66, 555 (1997).

    Article  ADS  Google Scholar 

  58. S. Tewari, C. Zhang, V. M. Yakovenko, and S. Das Sarma, Phys. Rev. Lett. 100, 217 004 (2008).

    Google Scholar 

  59. X. L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78, 195 424 (2008).

    Google Scholar 

  60. A. M. Essin, J. E. Moore, and D. Vandrerbilt, Phys. Rev. Lett. 102, 146 805 (2009).

    Article  Google Scholar 

  61. L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096 407 (2008).

    Google Scholar 

  62. A. Kitaev, Ann. Phys. 303, 2 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. F. Wilczek, Nature Phys. 5, 614 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Kopaev.

Additional information

Original Russian Text © Yu.V. Kopaev, A.A. Gorbatsevich, V.I. Belyavskii, 2011, published in Kristallografiya, 2011, Vol. 56, No. 5, pp. 906–916.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopaev, Y.V., Gorbatsevich, A.A. & Belyavskii, V.I. Charge and spin topological insulators. Crystallogr. Rep. 56, 848–857 (2011). https://doi.org/10.1134/S1063774511050257

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774511050257

Keywords

Navigation