Skip to main content
Log in

Small-angle X-ray scattering, synchrotron radiation, and the structure of bio- and nanosystems

  • Reviews
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Small-angle X-ray scattering is a universal diffraction method for studying the supra-atomic structure of matter. The potential of this technique has greatly increased in recent years due to the development of bright synchrotron radiation sources. The extensive use of these sources, in combination with new techniques for analyzing scattering data and structure modeling, made small-angle scattering one of the most effective analytical methods for studying nanoscale structures. In this review, after a brief outline of the basic principles of small-angle scattering by isotropic dispersed nanosystems, we consider two areas of nanodiagnostics, in which the progress in the small-angle experiment and the latest techniques for interpreting scattering data has become pronounced in recent years. These areas—the analysis of the structure of biological macromolecules in a solution and structural studies of metal nanoparticles synthesized in polymer and aqueous media—are illustrated by examples of practical biological and nanotechnologycal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Kovalchuk and V. G. Kohn, Usp. Fiz. Nauk 149(1), 69 (1986).

    Article  Google Scholar 

  2. M. V. Kovalchuk, A. Yu. Kazimirov, and S. I. Zheludeva, Nucl. Instrum. Methods Phys. Res., No. 101, 435 (1995).

  3. W. Friedrich, P. Knipping, and M. Laue, Ann. Phys. 14, 971 (1913).

    Article  Google Scholar 

  4. F. Schluenzen, A. Tocilj, R. Zarivach, et al., Cell 102(5), 615 (2000).

    Article  Google Scholar 

  5. B. K. Vainshtein, Modern Crystallography (Nauka, Moscow, 1979), Vol. 1 [in Russian].

    Google Scholar 

  6. A. Guinier and G. Fournet, Small-Angle Scattering of X-Rays (Wiley, New York, 1955).

    Google Scholar 

  7. Yu. A. Rol’bin, D. I. Svergun, L. A. Feigin, et al., Dokl. Akad. Nauk SSSR, 255, 1497 (1980).

    Google Scholar 

  8. X. Agirrezabala, J. Martin-Benito, J. R. Caston, et al., EMBO J. 24, 3820 (2005).

    Article  Google Scholar 

  9. L. Yu. Mogilevskii, A. T. Dembo, D. Svergun, and L. A. Feigin, Sov. Phys. Crystallogr. 29, 49 (1984).

    Google Scholar 

  10. L. A. Feigin, D. I. Svergun, A. T. Dembo, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 282(2–3), 486 (1989).

    Article  ADS  Google Scholar 

  11. L. A. Feigin and D. I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Plenum, New York, 1987).

    Google Scholar 

  12. A. Guinier, Ann. Phys. 12, 161 (1939).

    MATH  Google Scholar 

  13. O. Glatter and O. Kratky, Small-Angle X-Ray Scattering (Academic, London, 1982).

    Google Scholar 

  14. O. Glatter, J. Appl. Crystallogr. 10, 415 (1977).

    Article  Google Scholar 

  15. P. V. Konarev, V. V. Volkov, A. V. Sokolova, et al., J. Appl. Crystallogr. 36, 1277 (2003).

    Article  Google Scholar 

  16. A. F. Nikiforov and V. B. Uvarov, Fundamentals of the Theory of Special Functions (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  17. H. B. Stuhrmann, Acta Crystallogr. A 26, 297 (1970).

    Article  ADS  Google Scholar 

  18. H. B. Stuhrmann, Z. Phys. Chem. (Frankfurt am Main). 72, 177 (1970).

    Article  Google Scholar 

  19. D. I. Svergun, L. A. Feigin, and B. M. Shchedrin, Sov. Phys. Dokl. 261, 1109 (1981).

    ADS  Google Scholar 

  20. D. I. Svergun, L. A. Feigin, and B. M. Shchedrin, Sov. Phys. Crystallogr. 26, 659 (1981).

    Google Scholar 

  21. P. V. Konarev, M. V. Petoukhov, V. V. Volkov, and D. I. Svergun, J. Appl. Crystallogr. 39, 277 (2006).

    Article  Google Scholar 

  22. D. I. Svergun, V. V. Volkov, M. B. Kozin, and H. B. Stu- hrmann, Acta Crystallogr. A 52, 419 (1996).

    Article  Google Scholar 

  23. D. I. Svergun, Biophys. J. 76, 2879 (1999).

    Article  ADS  Google Scholar 

  24. P. Chacon, F. Moran, E. Diaz, et al., Biophys. J. 74, 2760 (1998).

    Article  ADS  Google Scholar 

  25. D. Franke and D. I. Svergun, J. Appl. Crystallogr. 42, 342 (2009).

    Article  Google Scholar 

  26. V. V. Volkov and D. I. Svergun, J. Appl. Crystallogr. 36, 860 (2003).

    Article  Google Scholar 

  27. S. V. Amarantov, JETP 108(4), 629 (2009).

    Article  ADS  Google Scholar 

  28. M. B. Kozin and D. I. Svergun, J. Appl. Crystallogr. 34, 33 (2001).

    Article  Google Scholar 

  29. H. D. Mertens and D. I. Svergun, J. Struct Biol. 172(1), 128 (2010).

    Article  Google Scholar 

  30. I. Serdyuk, N. Zaccai, and J. Zaccai, Methods in Molecular Biophysics: Structure, Dynamics, Function (Cambridge Univ. Press, Cambridge, 2007).

    Google Scholar 

  31. M. Levitt, Proc. Natl. Acad. Sci. USA 104, 3183 (2007).

    Article  ADS  Google Scholar 

  32. M. V. Petoukhov and D. I. Svergun, Biophys. J. 89, 1237 (2005).

    Article  Google Scholar 

  33. D. I. Svergun, J. Appl. Crystallogr. 24, 485 (1991).

    Article  Google Scholar 

  34. I. M. Mikhailin and I. M. Ternov, Synchrotron Radiation (Znanie, Moscow, 1988) [in Russian].

    Google Scholar 

  35. H. B. Stuhrmann, Q. Rev. Biophys. 14(3), 433 (1981).

    Article  Google Scholar 

  36. M. Cammarata, L. Eybert, E. Ewald, et al., Rev. Sci. Instrum. 80(1), 15 (2009).

    Article  Google Scholar 

  37. M. H. Koch and W. Bras, Ann. Rep. Prog. Chem. C: Phys. Chem. 104, 35 (2008).

    Article  Google Scholar 

  38. Tsuruta. H. and T. C. Irving, Struct. Biol. 18(5), 601 (2008).

    Article  Google Scholar 

  39. M. W. Roessle, R. Klaering, U. Ristau, et al., J. Appl. Crystallogr. 40, 190 (2007).

    Article  Google Scholar 

  40. A. Round, D. Franke, S. Moritz, et al., J. Appl. Crystallogr. 41, 913 (2008).

    Article  Google Scholar 

  41. P. Boye, J. M. Feldkamp, J. Patommel, et al., Fabrication and Modeling Journal of Physics. Conference Series (2009). 186: 012063-1–012063-3.

    ADS  Google Scholar 

  42. D. I. Svergun, L. A. Feigin, and B. M. Schedrin, Sov. Phys. Dokl. 26(12), 1109 (1981).

    ADS  Google Scholar 

  43. D. I. Svergun, L. A. Feigin, and B. M. Schedrin, Acta Crystallogr. A 38, 827 (1982).

    Article  ADS  Google Scholar 

  44. X. Agirrezabala, J. Martin-Benito, J. R. Caston, et al., EMBO J. 24, 3820 (2005).

    Article  Google Scholar 

  45. D. I. Svergun and H. B. Stuhrmann, Acta Crystallogr. A 47, 736 (1991).

    Article  Google Scholar 

  46. J. J. Blow and A. Dutta, Nat. Rev. Mol. Cell. Biol. 6, 476 (2005).

    Article  Google Scholar 

  47. C. Lee, B. Hong, J. M. Choi, et al., Nature 430(7002), 913 (2004).

    Article  ADS  Google Scholar 

  48. V. de Marco, P. J. Gillespie, A. Li, et al., Proc. Natl. Acad. Sci. USA. 106(47), 19807 (2009).

    Google Scholar 

  49. D. I. Svergun, C. Barberato, and M. H. J. Koch, J. Appl. Crystallogr. 28, 768 (1995).

    Article  Google Scholar 

  50. F. Prischi, P. V. Konarev, C. Iannuzzi, et al., Nat. Commun. 1, 95 (2010).

    Article  Google Scholar 

  51. G. Schmid, Nanoparticles: From Theory to Application (Wiley Interscience, New York, 2004), p. 443.

    Google Scholar 

  52. V. V. Volkov, R. L. Kajushina, and V. A. Lapuk, et. al., J. Appl. Crystallogr. 36, 503 (2003).

    Article  Google Scholar 

  53. E. V. Shtykova, E. V. Shtykova, V. V. Volkov, et al., J. Appl. Crystallogr. 36, 669 (2003).

    Article  Google Scholar 

  54. L. M. Bronstein, S. N. Sidorov, V. Zhirov, et al., J. Phys. Chem. B 109, 18786 (2005).

    Article  Google Scholar 

  55. E. V. Shtykova, X. Huang, N. Remmes, et al., J. Phys. Chem. 111, 18078 (2007).

    Google Scholar 

  56. E. V. Shtykova, X. Gao, X. Huang, et al., J. Phys. Chem. 112, 16809 (2008).

    Google Scholar 

  57. Yu. M. Yevdokimov, V. I. Salyanov, E. V. Shtykova, et al., Open Nanosci. J. 2, 17 (2008).

    Article  ADS  Google Scholar 

  58. L. M. Bronstein, M. Kostylev, E. V. Shtykova, et al., Langmuir 24, 12618 (2008).

    Article  Google Scholar 

  59. V. V. Volkov, V. A. Lapuk, E. V. Shtykova, et al., Crystallogr. Rep. 53(3), 466 (2008).

    Article  ADS  Google Scholar 

  60. E. V. Shtykova, K. A. Dembo, V. V. Volkov, et al., Ross. Nanotechnol. 4(9–10), 64 (2009).

    Google Scholar 

  61. E. V. Shtykova, V. V. Volkov, V. I. Salyanov, and Y. M. Yevdokimov, Eur. Biophys. J. 39, 1313 (2010).

    Article  Google Scholar 

  62. L. M. Bronstein, E. V. Shtykova, A. Malyutin, et al., J. Phys. Chem. C 114, 21900 (2010).

    Article  Google Scholar 

  63. E. V. Shtykova, A. Malyutin, J. Dyke, et al., J. Phys. Chem. C 114, 21908 (2010).

    Article  Google Scholar 

  64. H. B. Stuhrmann, G. Goerigk, and B. Munk, Handbook on Synchrotron Radiation, Ed. by E. Rubenstein, S. Ebashi, and M. Koch (Elsevier, Amsterdam, 1994), p. 555.

    Google Scholar 

  65. H.-G. Haubold, R. Gebhardt, G. Buth, and G. Goerigk, Resonant Anomalous X-Ray Scattering, Ed. by G. Materlik, C. J. Sparkks, and K. Fischer (Elsevier Science, Oxford, 1994), p. 295.

    Google Scholar 

  66. H.-G. Haubold, K. Gruenhagen, M. Wagener, et al., Rev. Sci. Instrum. 60, 1943 (1989).

    Article  ADS  Google Scholar 

  67. H.-G. Haubold, R. Gebhardt, G. Buth, and G. Goerigk, Resonant Anomalous X-Ray Scattering, Ed. by G. Materlik, C. J. Sparkks, and K. Fischer (Elsevier Science, Oxford, 1994), p. 295.

    Google Scholar 

  68. M. V. Petoukhov, P. V. Konarev, A. G. Kikhney, and D. I. Svergun, J. Appl. Crystallogr. 40, 223 (2007).

    Article  Google Scholar 

  69. Yu. V. Khandurina, A. T. Dembo, V. B. Rogacheva, et al., Vysokomol. Soedin. A 36, 235 (1994).

    Google Scholar 

  70. H. Okuzaki and Y. Osada, Macromol. 28, 380 (1995).

    Article  ADS  Google Scholar 

  71. A. T. Dembo, A. N. Yakunin, V. S. Zaitsev, et al., J. Polym. Sci.: Polym. Phys. 34, 2893 (1996).

    Article  ADS  Google Scholar 

  72. L. M. Bronstein, O. A. Platonova, A. N. Yakunin, et al., Langmuir 14, 252 (1998).

    Article  Google Scholar 

  73. L. M. Bronstein, O. A. Platonova, A. N. Yakunin, et al., Colloids Surf. A 147 (1999).

  74. D. I. Svergun, E. V. Shtykova, A. T. Dembo, et al., J. Chem. Phys. 109, 11109 (1998).

    Article  ADS  Google Scholar 

  75. D. I. Svergun, E. V. Shtykova, M. B. Kozin, et al., J. Phys. Chem. B 104, 5242 (2000).

    Article  Google Scholar 

  76. S. G. Starodoubtsev, E. V. Saenko, A. R. Khokhlov, et al., Microelectron. Eng. 69(2–4), 324 (2003).

    Article  Google Scholar 

  77. D. I. Svergun, E. V. Shtykova, M. B. Kozin, et al., Crystallogr. Rep. 46(4), 586 (2001).

    Article  ADS  Google Scholar 

  78. D. I. Svergun, M. B. Kozin, and P. V. Konarev, Chem. Mater. 12, 3552 (2000).

    Article  Google Scholar 

  79. E. V. Svergun, D. I. Shtykova, D. M. Chernyshov, et al., J. Phys. Chem. B 108, 6175 (2004).

    Article  Google Scholar 

  80. L. M. Bronstein, E. V. Shtykova, R. J. Spontak, and D. I. Svergun, Proc. Am. Chem. Soc. 230, 319 (2005).

    Google Scholar 

  81. MSI Cerius2, Version 3.5 (Molecular Simulation Inc., San Diego, USA, 1997).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Svergun.

Additional information

Original Russian Text © D.I. Svergun, E.V. Shtykova, V.V. Volkov, L.A. Feigin, 2011, published in Kristallografiya, 2011, Vol. 56, No. 5, pp. 777–804.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svergun, D.I., Shtykova, E.V., Volkov, V.V. et al. Small-angle X-ray scattering, synchrotron radiation, and the structure of bio- and nanosystems. Crystallogr. Rep. 56, 725–750 (2011). https://doi.org/10.1134/S1063774511050221

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774511050221

Keywords

Navigation